Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald T. Stewart is active.

Publication


Featured researches published by Donald T. Stewart.


Evolution | 1996

MULTIPLE ORIGINS OF GENDER-ASSOCIATED MITOCHONDRIAL DNA LINEAGES IN BIVALVES (MOLLUSCA: BIVALVIA)

Walter R. Hoeh; Donald T. Stewart; Brent W. Sutherland; Eleftherios Zouros

Previous studies have shown that marine mussels (genus Mytilus) and a freshwater mussel (Pyganodon grandis) contain two distinct gender‐associated mitotypes, which is a characteristic feature of the phenomenon of doubly uniparental inheritance (DUI) of mitochondrial DNA (mtDNA). Here we present evidence for the presence of distinct male (M) and female (F) mitotypes in three other bivalve species, the mytilid Geukensia demissa, and the unionid species P. fragilis and Fusconaia flava. Nucleotide sequences of a segment of the COI gene from the M and F mitotypes from each of the three mytilid species (M. edulis, M. trossulus, G. demissa) and three unionid species (P. grandis, P. fragilis, F. flava) were used for phylogenetic analysis. The analysis suggests three independent origins of M and F mitotypes for the six species examined; one for the three unionid species, one for the two Mytilus species, and one for Geukensia. The first of these F/M divergence events, while of uncertain age, predates the divergence of the two unionid genera and is likely older than either of the two F/M divergence events in the mytilid taxa. The most parsimonious explanation of multiple F/M divergence events is that they represent independent origins of DUI. Another possibility is that, in a given taxon, an F or M mitotype assumes the role of the opposite mitotype (by virtue of a mechanism that remains to be clarified) and subsequently was fixed within its new gender. The fixation of a mtDNA lineage derived from a mitotype of switched function would reset the divergence of the gender‐associated lineages to zero, thereby mimicking a de novo split of F and M lineages from a preexisting mtDNA genome that was not gender specific. Further broad‐scale taxonomic studies of the occurrence of distinct M and F mitotypes may allow for the evaluation of the latter hypothesis.


Genetics | 2005

Comparative Analysis of Gender-Associated Complete Mitochondrial Genomes in Marine Mussels (Mytilus spp.)

Sophie Breton; Gertraud Burger; Donald T. Stewart; Pierre U. Blier

Marine mussels of the genus Mytilus have an unusual mode of mitochondrial DNA (mtDNA) transmission termed doubly uniparental inheritance (DUI). Female mussels are homoplasmic for the F mitotype, which is inherited maternally, while males are usually heteroplasmic, carrying a mixture of the maternal F mitotype and the paternally inherited M genome. Two classes of M genomes have been observed: “standard” M genomes and “recently masculinized” M genomes. The latter are more similar to F genomes at the sequence level but are transmitted paternally like standard M genomes. In this study we report the complete sequences of two standard male M. edulis and one recently masculinized male M. trossulus mitochondrial genome. A comparative analysis, including the previously sequenced M. edulis F and M. galloprovincialis F and M mtDNAs, reveals that these genomes are identical in gene order, but highly divergent in nucleotide and amino acid sequence. The large amount (>20%) of nucleotide substitutions that fall in coding regions implies that there are several amino acid replacements between the F and M genomes, which likely have an impact on the structural and functional properties of the mitochondrial proteome. Correlation of the divergence rate of different protein-coding genes indicates that mtDNA-encoded proteins of the M genome are still under selective constraints, although less highly than genes of the F genome. The mosaic F/M control region of the masculinized F genome provides evidence for lineage-specific sequences that may be responsible for the different mode of transmission genetics. This analysis shows the value of comparative genomics to better understand the mechanisms of maintenance and segregation of mtDNA sequence variants in mytilid mussels.


Evolution | 2002

HIGH FIDELITY OF MITOCHONDRIAL GENOME TRANSMISSION UNDER THE DOUBLY UNIPARENTAL MODE OF INHERITANCE IN FRESHWATER MUSSELS (BIVALVIA: UNIONOIDEA)

Walter R. Hoeh; Donald T. Stewart; Sheldon I. Guttman

Abstract.— Doubly uniparental inheritance (DUI) of mitochondrial DNA (mtDNA) has been demonstrated in both mytilid and unionid bivalves. Under DUI, females pass on their mtDNA to both sons and daughters, whereas males pass on their mtDNA to only sons. In mytilids, the loss of an original male (or M) mitotype, with its subsequent replacement by that lineages female (or F) mitotype, has been called a role‐reversal or, more specifically, a masculinization event. Multiple masculinization events have been inferred during the evolutionary history of mytilids but not unionids. The perceived lack of role‐reversal events in unionids may represent a significant difference in the evolutionary dynamics of DUI between the two bivalve taxa or simply a lack of sufficient taxon sampling in unionids. To evaluate these alternative hypotheses, six additional unionoidean bivalve genera were sampled for DUI including one genus from the sister taxon of the Unionidae, the Hyriidae. Phylogenetic analyses of 619 base pairs of cytochrome c oxidase I (COI) from eight genera (nine species) of unionoidean bivalves, plus the sister taxon to the Unionoida, Neotrigonia, revealed that the M and F unionoidean mitotypes were contained in gender‐specific, topologically congruent clades. This supports the hypothesis that either role‐reversal events do not occur in unionoideans or, if they do occur, their products are ephemeral in an evolutionary sense. Furthermore, the fact that the mantle‐tissue‐derived Neotrigonia mitotype is the sister mitotype to the unionoidean F mitotype clade suggests that DUI has been operating with high fidelity in unionoids for at least 200 million years. A relatively low incidence of interspecific hybridization in unionoideans and a possibly obligate role for the M mitotype in unionoidean gender determination are offered as potential explanations for the disparate evolutionary dynamics of DUI observed between mytilid and unionoidean bivalves.


Genetics | 2009

Comparative Mitochondrial Genomics of Freshwater Mussels (Bivalvia: Unionoida) With Doubly Uniparental Inheritance of mtDNA: Gender-Specific Open Reading Frames and Putative Origins of Replication

Sophie Breton; Hélène Doucet Beaupré; Donald T. Stewart; Helen Piontkivska; Moumita Karmakar; Arthur E. Bogan; Pierre U. Blier; Walter R. Hoeh

Doubly uniparental inheritance (DUI) of mitochondrial DNA in marine mussels (Mytiloida), freshwater mussels (Unionoida), and marine clams (Veneroida) is the only known exception to the general rule of strict maternal transmission of mtDNA in animals. DUI is characterized by the presence of gender-associated mitochondrial DNA lineages that are inherited through males (male-transmitted or M types) or females (female-transmitted or F types), respectively. This unusual system constitutes an excellent model for studying basic aspects of mitochondrial DNA inheritance and the evolution of mtDNA genomes in general. Here we compare published mitochondrial genomes of unionoid bivalve species with DUI, with an emphasis on characterizing unassigned regions, to identify regions of the F and M mtDNA genomes that could (i) play a role in replication or transcription of the mtDNA molecule and/or (ii) determine whether a genome will be transmitted via the female or the male gamete. Our results reveal the presence of one F-specific and one M-specific open reading frames (ORFs), and we hypothesize that they play a role in the transmission and/or gender-specific adaptive functions of the M and F mtDNA genomes in unionoid bivalves. Three major unassigned regions shared among all F and M unionoid genomes have also been identified, and our results indicate that (i) two of them are potential heavy-strand control regions (OH) for regulating replication and/or transcription and that (ii) multiple and potentially bidirectional light-strand origins of replication (OL) are present in unionoid F and M mitochondrial genomes. We propose that unassigned regions are the most promising candidate sequences in which to find regulatory and/or gender-specific sequences that could determine whether a mitochondrial genome will be maternally or paternally transmitted.


Marine Genomics | 2010

Characterization of a mitochondrial ORF from the gender-associated mtDNAs of Mytilus spp. (Bivalvia: Mytilidae): identification of the "missing" ATPase 8 gene.

Sophie Breton; Donald T. Stewart; Walter R. Hoeh

Bivalve species are characterized by extraordinary variability in terms of mitochondrial (mt) genome size, gene arrangement and tRNA gene number. Many species are thought to lack the mitochondrial protein-coding gene atp8. Of these species, the Mytilidae appears to be the only known taxon with doubly uniparental inheritance of mtDNA that does not possess the atp8 gene. This raises the question as to whether mytilids have completely lost the ATP8 protein, whether the gene has been transferred to the nucleus or whether they possess a highly modified version of the gene/protein that has led to its lack of annotation. In the present study, we re-investigated all complete (or nearly complete) F and M mytilid mt genomes previously sequenced for the presence of conserved open reading frames (ORFs) that might code for ATP8 and/or have other functional importance in these bivalves. We also revised the annotations of all available complete mitochondrial genomes of bivalves and nematodes that are thought to lack atp8 in an attempt to detect it. Our results indicate that a novel mytilid ORF of significant length (i.e., the ORF is >85 amino acids in length), with complete start and stop codons, is a candidate for the atp8 gene: (1) it possesses a pattern of evolution expected for a protein-coding gene evolving under purifying selection (i.e., the 3rd>1st>2nd codon pattern of evolution), (2) it is actively transcribed in Mytilus species, (3) it has one predicted transmembrane helix (as do other metazoan ATP8 proteins), (4) it has conserved functional motifs and (5), comparisons of its amino acid sequence with ATP8 sequences of other molluscan or bivalve species reveal similar hydropathy profiles. Furthermore, our revised annotations also confirmed the mt presence of atp8 in almost all bivalve species and in one nematode species. Our results thus support recognizing the presence of ATPase 8 in most bivalves mt genomes (if not all) rather than the continued characterization of these genomes as lacking this gene.


Trends in Genetics | 2014

A resourceful genome: updating the functional repertoire and evolutionary role of animal mitochondrial DNAs

Sophie Breton; Liliana Milani; Fabrizio Ghiselli; Davide Guerra; Donald T. Stewart; Marco Passamonti

Recent data from mitochondrial genomics and proteomics research demonstrate the existence of several atypical mitochondrial protein-coding genes (other than the standard set of 13) and the involvement of mtDNA-encoded proteins in functions other than energy production in several animal species including humans. These results are of considerable importance for evolutionary and cellular biology because they indicate that animal mtDNAs have a larger functional repertoire than previously believed. This review summarizes recent studies on animal species with a non-standard mitochondrial functional repertoire and discusses how these genetic novelties represent promising candidates for studying the role of the mitochondrial genome in speciation.


PLOS ONE | 2011

Evidence for a Fourteenth mtDNA-Encoded Protein in the Female-Transmitted mtDNA of Marine Mussels (Bivalvia: Mytilidae)

Sophie Breton; Fabrizio Ghiselli; Marco Passamonti; Liliana Milani; Donald T. Stewart; Walter R. Hoeh

Background A novel feature for animal mitochondrial genomes has been recently established: i.e., the presence of additional, lineage-specific, mtDNA-encoded proteins with functional significance. This feature has been observed in freshwater mussels with doubly uniparental inheritance of mtDNA (DUI). The latter unique system of mtDNA transmission, which also exists in some marine mussels and marine clams, is characterized by one mt genome inherited from the female parent (F mtDNA) and one mt genome inherited from the male parent (M mtDNA). In freshwater mussels, the novel mtDNA-encoded proteins have been shown to be mt genome-specific (i.e., one novel protein for F genomes and one novel protein for M genomes). It has been hypothesized that these novel, F- and M-specific, mtDNA-encoded proteins (and/or other F- and/or M-specific mtDNA sequences) could be responsible for the different modes of mtDNA transmission in bivalves but this remains to be demonstrated. Methodology/Principal Findings We investigated all complete (or nearly complete) female- and male-transmitted marine mussel mtDNAs previously sequenced for the presence of ORFs that could have functional importance in these bivalves. Our results confirm the presence of a novel F genome-specific mt ORF, of significant length (>100aa) and located in the control region, that most likely has functional significance in marine mussels. The identification of this ORF in five Mytilus species suggests that it has been maintained in the mytilid lineage (subfamily Mytilinae) for ∼13 million years. Furthermore, this ORF likely has a homologue in the F mt genome of Musculista senhousia, a DUI-containing mytilid species in the subfamily Crenellinae. We present evidence supporting the functionality of this F-specific ORF at the transcriptional, amino acid and nucleotide levels. Conclusions/Significance Our results offer support for the hypothesis that “novel F genome-specific mitochondrial genes” are involved in key biological functions in bivalve species with DUI.


FEBS Letters | 2007

Reproductive Function for a C-terminus Extended, Male-Transmitted Cytochrome C Oxidase Subunit II Protein Expressed in both Spermatozoa and Eggs

Rumela Chakrabarti; Jennifer M. Walker; Eric G. Chapman; Sally Shepardson; Richard J. Trdan; Jason P. Curole; G.T. Watters; Donald T. Stewart; Srinivasan Vijayaraghavan; Walter R. Hoeh

Our previous study documented expression of a male‐transmitted cytochrome c oxidase subunit II protein (MCOX2), with a C‐terminus extension (MCOX2e), in unionoidean bivalve testes and sperm mitochondria. Here, we present evidence demonstrating that MCOX2 is seasonally expressed in testis, with a peak shortly before fertilization that is independent of sperm density. MCOX2 is localized to the inner and outer sperm mitochondrial membranes and the MCOX2 antibodys epitope is conserved across >65 million years of evolution. We also demonstrate the presence of male‐transmitted mtDNA and season‐specific MCOX2 spatial variation in ovaries. We hypothesize that MCOX2 plays a role in reproduction through gamete maturation, fertilization and/or embryogenesis.


Journal of Parasitology | 2009

Cophylogeny of Nosema (Microsporidia: Nosematidae) and Bees (Hymenoptera: Apidae) Suggests Both Cospeciation and a Host-switch

Aaron B. A. Shafer; Geoffrey R. Williams; Dave Shutler; Richard E.L. Rogers; Donald T. Stewart

Abstract Some microsporidian parasites belonging to the genus Nosema infect bees. Previous phylogenies of these parasites have produced alternative, conflicting relationships. We analyzed separately, and in combination, large and small subunit ribosomal DNA sequences of Nosema species infecting bees under neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian frameworks. We observed a sister relationship between Nosema ceranae and Nosema bombi, with Nosema apis as a basal member to this group. When compared to their respective hosts (Apis cerana, Bombus spp., and A. mellifera), 2 plausible evolutionary scenarios emerged. The first hypothesis involves a common ancestor of N. bombi host-switching from a historical Bombus lineage to A. cerana. The second suggests an ancestral N. ceranae host-switching to a species of Bombus. The reported events offer insight into the evolutionary history of these organisms and may explain host specificity and virulence of Nosema in these economically important insects.


Evolution | 2007

SPERM MOTILITY IN MYTILUS EDULIS IN RELATION TO MITOCHONDRIAL DNA POLYMORPHISMS: IMPLICATIONS FOR THE EVOLUTION OF DOUBLY UNIPARENTAL INHERITANCE IN BIVALVES

M. Jha; J. Côté; Walter R. Hoeh; Pierre U. Blier; Donald T. Stewart

Abstract Bivalves of the families Mytilidae, Unionidae, and Veneridae have an unusual mode of mitochondrial DNA (mtDNA) transmission called doubly uniparental inheritance (DUI). A characteristic feature of DUI is the presence of two gender-associated mtDNA genomes that are transmitted through males (M-type mtDNA) and females (F-type mtDNA), respectively. Female mussels are predominantly homoplasmic with only the F-type expressed in both somatic and gonadal tissue; males are heteroplasmic with the M-type expressed in the gonad and F-type in somatic tissue for the most part. An unusual evolutionary feature of this system is that an mt genome with F-coding sequences occasionally invades the male route of inheritance (i.e., a “role reversal” event), and is thereafter transmitted as a new M-type. Phylogenetic studies have demonstrated that the new or “recently masculinized” M-types may eventually replace the older or “standard” M-types over time. To investigate whether this replacement process could be due to an advantage in sperm swimming behavior, we measured differences in motility parameters and found that sperm with the recently masculinized M-type had significantly faster curvilinear velocity and average path velocity when compared to sperm with standard M-type. This increase in sperm swimming speed could explain the multiple evolutionary replacements of standard M-types by masculinized M-types that have been hypothesized for the mytilid lineage. However, our observations do not support the hypothesis that DUI originated because it permits the evolution of mitochondrial adaptations specific to sperm performance, otherwise, the evolutionarily older, standard M genome should perform better.

Collaboration


Dive into the Donald T. Stewart's collaboration.

Top Co-Authors

Avatar

Sophie Breton

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre U. Blier

Université du Québec à Rimouski

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur E. Bogan

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Davide Guerra

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Jennifer M. Walker

University of Southern Mississippi

View shared research outputs
Top Co-Authors

Avatar

Richard J. Trdan

Saginaw Valley State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge