Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald W. Hilgemann is active.

Publication


Featured researches published by Donald W. Hilgemann.


Nature | 1998

Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ

Chou Long Huang; Siyi Feng; Donald W. Hilgemann

Inward rectifier K+ channels, which modulate electrical activity in many cell types, are regulated by protein kinases,, guanine-nucleotide-binding proteins (G proteins) and probably actin cytoskeleton. Generation of phosphatidylinositol 4,5-bisphosphate (PIP2) by ATP-dependent lipid kinases is known to activate inward rectifier K+ channels in cardiac membrane patches. Herewe report that several cloned inward rectifier K+ channels directly bind PIP2, and that this binding correlates with channel activity. Application of ATP or PIP2 liposomes activates the cloned channels. Stabilized by lipid phosphatase inhibitors, PIP2 antibodies potently inhibit each channel with a unique rate (GIRK1/4 (refs 3-5) ≈ GIRK2 (ref. 6) ≫ IRK1 (ref. 10) ≈ ROMK (ref. 11)). Consistent with the faster dissociation of PIP2 from the GIRK channels, the carboxy terminus of GIRK1 binds 3H-PIP2 liposomes more weakly than does that of IRK1 or ROMK1. Mutation of a conserved arginine to glutamine at position 188 reduces the ability of ROMK1 to bind PIP2 and increases its sensitivity to inhibition by PIP2 antibodies. Interactions between GIRK channels and PIP2 are modulated by the βγ subunits of the G protein (Gβγ). When GIRK1/4 channels are allowed to run down completely, they are not activated by addition of Gβγ alone, but application of PIP2 activates them in minutes without Gβγ and in just seconds with Gβγ. Finally, coexpression of Gβγ with GIRK channels slows the inhibition of K+ currents by PIP2 antibodies by more than 10-fold. Thus Gβγ activates GIRK channels by stabilizing interactions between PIP2 and the K+ channel.


Science | 1996

Regulation of cardiac Na+,Ca2+ exchange and KATP potassium channels by PIP2.

Donald W. Hilgemann; Rebecca Ball

Cardiac Na+,Ca2+ exchange is activated by a mechanism that requires hydrolysis of adenosine triphosphate (ATP) but is not mediated by protein kinases. In giant cardiac membrane patches, ATP acted to generate phosphatidylinositol-4,5-bisphosphate (PIP2) from phosphatidylinositol (PI). The action of ATP was abolished by a PI-specific phospholipase C (PLC) and recovered after addition of exogenous PI; it was reversed by a PIP2-specific PLC; and it was mimicked by exogenous PIP2. High concentrations of free Ca2+ (5 to 20 μM) accelerated reversal of the ATP effect, and PLC activity in myocyte membranes was activated with a similar Ca2+ dependence. Aluminum reversed the ATP effect by binding with high affinity to PIP2. ATP-inhibited potassium channels (KATP) were also sensitive to PIP2, whereas Na+,K+ pumps and Na+ channels were not. Thus, PIP2 may be an important regulator of both ion transporters and channels.


The Journal of General Physiology | 2005

Phospholipase C in Living Cells: Activation, Inhibition, Ca2+ Requirement, and Regulation of M Current

Lisa F. Horowitz; Wiebke Hirdes; Byung-Chang Suh; Donald W. Hilgemann; Ken Mackie; Bertil Hille

We have further tested the hypothesis that receptor-mediated modulation of KCNQ channels involves depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphoinositide-specific phospholipase C (PLC). We used four parallel assays to characterize the agonist-induced PLC response of cells (tsA or CHO cells) expressing M1 muscarinic receptors: translocation of two fluorescent probes for membrane lipids, release of calcium from intracellular stores, and chemical measurement of acidic lipids. Occupation of M1 receptors activates PLC and consumes cellular PIP2 in less than a minute and also partially depletes mono- and unphosphorylated phosphoinositides. KCNQ current is simultaneously suppressed. Two inhibitors of PLC, U73122 and edelfosine (ET-18-OCH3), can block the muscarinic actions completely, including suppression of KCNQ current. However, U73122 also had many side effects that were attributable to alkylation of various proteins. These were mimicked or occluded by prior reaction with the alkylating agent N-ethylmaleimide and included block of pertussis toxin–sensitive G proteins and effects that resembled a weak activation of PLC or an inhibition of lipid kinases. By our functional criteria, the putative PLC activator m-3M3FBS did stimulate PLC, but with a delay and an irregular time course. It also suppressed KCNQ current. The M1 receptor–mediated activation of PLC and suppression of KCNQ current were stopped by lowering intracellular calcium well below resting levels and were slowed by not allowing intracellular calcium to rise in response to PLC activation. Thus calcium release induced by PLC activation feeds back immediately on PLC, accelerating it during muscarinic stimulation in strong positive feedback. These experiments clarify important properties of receptor-coupled PLC responses and their inhibition in the context of the living cell. In each test, the suppression of KCNQ current closely paralleled the expected fall of PIP2. The results are described by a kinetic model.


Proceedings of the Royal society of London. Series B. Biological sciences | 1987

Excitation-Contraction Coupling and Extracellular Calcium Transients in Rabbit Atrium: Reconstruction of Basic Cellular Mechanisms

Donald W. Hilgemann; Denis Noble

Interactions of electrogenic sodium-calcium exchange, calcium channel and sarcoplasmic reticulum in the mammalian heart have been explored by simulation of extracellular calcium transients measured with tetramethylmurexide in rabbit atrium. The approach has been to use the simplest possible formulations of these mechanisms, which together with a minimum number of additional mechanisms allow reconstruction of action potentials, intracellular calcium transients and extracellular calcium transients. A 3:1 sodium-calcium exchange stoichiometry is assumed. Calcium-channel inactivation is assumed to take place by a voltage-dependent mechanism, which is accelerated by a rise in intracellular calcium; intracellular calcium release becomes a major physiological regulator of calcium influx via calcium channels. A calcium release mechanism is assumed, which is both calcium- and voltage-sensitive, and which undergoes prolonged inactivation. 200 μm cytosolic calcium buffer is assumed. For most simulations only instantaneous potassium conductances are simulated so as to study the other mechanisms independently of time- and calcium-dependent outward current. Thus, the model reconstructs extracellular calcium transients and typical action-potential configuration changes during steady-state and non-steady-state stimulation from the mechanisms directly involved in trans-sarcolemmal calcium movements. The model predicts relatively small trans-sarcolemmal calcium movements during regular stimulation (ca. 2 μmol kg-1 fresh mass per excitation); calcium current is fully activated within 2 ms of excitation, inactivation is substantially complete within 30 ms, and sodium-calcium exchange significantly resists repolarization from approximately -30 mV. Net calcium movements many times larger are possible during non-steady-state stimulation. Long action potentials at premature excitations or after inhibition of calcium release can be supported almost exclusively by calcium current (net calcium influx 5-30 μmol kg-1 fresh mass); action potentials during potentiated post stimulatory contractions can be supported almost exclusively by sodium-calcium exchange (net calcium efflux 4-20 μmol kg-1 fresh mass). Large calcium movements between the extracellular space and the sarcoplasmic reticulum can take place through the cytosol with virtually no contractile activation. The simulations provide integrated explanations of electrical activity, contractile function and trans-sarcolemmal calcium movements, which were outside the explanatory range of previous models.


The EMBO Journal | 1999

Cloning and characterization of a novel Mg2+/H+ exchanger

Orit Shaul; Donald W. Hilgemann; Janice de‐Almeida‐Engler; Marc Van Montagu; Dirk Inzé; Gad Galili

Cellular functions require adequate homeostasis of several divalent metal cations, including Mg2+ and Zn2+. Mg2+, the most abundant free divalent cytoplasmic cation, is essential for many enzymatic reactions, while Zn2+ is a structural constituent of various enzymes. Multicellular organisms have to balance not only the intake of Mg2+ and Zn2+, but also the distribution of these ions to various organs. To date, genes encoding Mg2+ transport proteins have not been cloned from any multicellular organism. We report here the cloning and characterization of an Arabidopsis thaliana transporter, designated AtMHX, which is localized in the vacuolar membrane and functions as an electrogenic exchanger of protons with Mg2+ and Zn2+ ions. Functional homologs of AtMHX have not been cloned from any organism. Ectopic overexpression of AtMHX in transgenic tobacco plants render them sensitive to growth on media containing elevated levels of Mg2+ or Zn2+, but does not affect the total amounts of these minerals in shoots of the transgenic plants. AtMHX mRNA is mainly found at the vascular cylinder, and a large proportion of the mRNA is localized in close association with the xylem tracheary elements. This localization suggests that AtMHX may control the partitioning of Mg2+ and Zn2+ between the various plant organs.


The Journal of Neuroscience | 2005

Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4,5-bisphosphate

Yang Li; Nikita Gamper; Donald W. Hilgemann; Mark S. Shapiro

Voltage-gated Kv7 (KCNQ) channels underlie important K+ currents, including the neuronal M current, and are thought to be sensitive to membrane phosphatidylinositol 4,5-bisphosphate (PIP2) and PIP2 depletion to underlie muscarinic receptor inhibition. We studied regulation of Kv7.2-7.4 channels by PIP2 in Chinese hamster ovary (CHO) cells using single-channel and whole-cell patch clamp and biochemical analysis. Maximal open probabilities (Po) of Kv7.2-Kv7.4 homomultimers and of Kv7.2/7.3 heteromultimers were found to be strongly dependent on the [diC8-PIP2] applied to inside-out patches, with differential apparent affinities that correlate with their maximal Po in on-cell mode. Unitary conductance was not affected by PIP2. Raising tonic [PIP2] by coexpression of phosphatidylinositol (4)5-kinase increased the maximal Po of both Kv7.2 and Kv7.2/7.3 channels studied in on-cell patches and increased whole-cell Kv7.2, but not Kv7.3, current amplitudes. In cells coexpressed with muscarinic M1 receptors, bath application of muscarinic agonist reduced the maximal Po of Kv7.2/7.3 channels isolated in on-cell patches. Coexpression of a PIP2 sequestering construct moderately reduced whole-cell Kv7.2/7.3 currents, and coexpression of a construct containing a PIP2 phosphatase nearly abolished them. Finally, biochemical analysis of anionic phospholipids in CHO cells stably expressing M1 receptors shows that PIP2 and PIP are nearly depleted 1 min after muscarinic stimulation, with an unexpected rebound after 10 min. These results strongly support the direct regulation of Kv7 channels by PIP2 and its depletion as the mechanism of muscarinic suppression of M channels. Divergent apparent affinities of Kv7.2-7.4 channels for PIP2 may underlie their highly differential maximal Po observed in cell-attached patches.


American Journal of Physiology-cell Physiology | 1998

Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3).

Bettina Linck; Zhiyong Qiu; Zhaoping He; Qiusheng Tong; Donald W. Hilgemann; Kenneth D. Philipson

Three distinct mammalian Na+/Ca2+exchangers have been cloned: NCX1, NCX2, and NCX3. We have undertaken a detailed functional comparison of these three exchangers. Each exchanger was stably expressed at high levels in the plasma membranes of BHK cells. Na+/Ca2+exchange activity was assessed using three different complementary techniques: Na+ gradient-dependent45Ca2+uptake into intact cells, Na+gradient-dependent45Ca2+uptake into membrane vesicles isolated from the transfected cells, and exchange currents measured using giant patches of excised cell membrane. Apparent affinities for the transported ions Na+ and Ca2+ were markedly similar for the three exchangers at both membrane surfaces. Likewise, generally similar responses to changes in pH, chymotrypsin treatment, and application of various inhibitors were obtained. Depletion of cellular ATP inhibited NCX1 and NCX2 but did not affect the activity of NCX3. Exchange activities of NCX1 and NCX3 were modestly increased by agents that activate protein kinases A and C. All exchangers were regulated by intracellular Ca2+. NCX1-induced exchange currents were especially large in excised patches and, like the native myocardial exchanger, were stimulated by ATP. Results may be influenced by our choice of expression system and specific splice variants, but, overall, the three exchangers appear to have very similar properties.


The Journal of Physiology | 1992

The giant cardiac membrane patch method: stimulation of outward Na(+)-Ca2+ exchange current by MgATP.

Anthony Collins; A V Somlyo; Donald W. Hilgemann

1. A giant patch method was used to study the stimulatory effect of cytoplasmic MgATP on outward Na(+)‐Ca2+ exchange current in inside‐out cardiac membrane patches (1‐10 G omega seals with 14‐24 microns pipette tip diameters) excised from guinea‐pig, rabbit and mouse myocytes. 2. To establish the validity of the method with respect to structure, bleb formation was examined with electron microscopy and with confocal fluorescence light microscopy. The blebs, which form as the sarcolemma detaches, excluded intracellular organelles and transverse tubules. The blebbed cells contained normal sarcomeres, sarcoplasmic reticulum, triads and diads. 3. To further establish the validity of the method for ion transport studies, measurements of Na(+)‐K+ pump currents and charge movements are described briefly which demonstrate (i) free access to the cytoplasmic membrane side, (ii) MgATP dependence comparable to reconstituted pump (Kd, 94 microns), (iii) fast, rigorous concentration control and (iv) Na(+)‐K+ pump densities in the range of whole‐cell densities. 4. Stimulation of outward Na(+)‐Ca2+ exchange current by MgATP attenuated exchange current decay during step increments of cytoplasmic sodium, shifted the secondary activation of outward exchange current by cytoplasmic calcium to lower free calcium concentrations and, particularly in mouse cardiac sarcolemma, induced cytoplasmic calcium‐independent current. 5. Upon removal of MgATP the stimulatory effect usually decayed with a t50 (half‐time) of about 3 min. However, the reversal took place much more rapidly (t50, 5‐20 s) in patches from individual guinea‐pig and rabbit myocyte batches. When decay was rapid, secondary activation by cytoplasmic calcium was shifted to higher free cytoplasmic calcium concentrations (Kd, 10‐65 microns‐free calcium). 6. With repeated applications of MgATP the rate and magnitude of the stimulatory effect progressively decreased. 7. The Kd for MgATP of the initial rate of stimulation of outward exchange current was 3 mM or greater. When decay was rapid, the steady‐state dependence of exchange current on MgATP also had a Kd of 3 mM or greater. 8. Stimulation of Na(+)‐Ca2+ exchange current by MgATP occurred in the absence of cytoplasmic calcium with 9 mM‐EGTA. 9. The stimulatory effect of 2 mM‐MgATP was not inhibited by up to 200 microM of the protein kinase inhibitor 1‐(5‐isoquinoline sulphonyl)‐2‐methylpiperazine (H7), or by peptide inhibitors of cyclic AMP‐dependent protein kinase, protein kinase C and calcium‐calmodulin‐dependent protein kinase II.(ABSTRACT TRUNCATED AT 400 WORDS)


Nature | 2004

Multiple transport modes of the cardiac Na+/Ca2+ exchanger

Tong Mook Kang; Donald W. Hilgemann

The cardiac Na+/Ca2+ exchanger (NCX1; ref. 2) is a bi-directional Ca2+ transporter that contributes to the electrical activity of the heart. When, and if, Ca2+ is exported or imported depends on the Na+/Ca2+ exchange ratio. Whereas a ratio of 3:1 (Na+:Ca2+) has been indicated by Ca2+ flux equilibrium studies, a ratio closer to 4:1 has been indicated by exchange current reversal potentials. Here we show, using an ion-selective electrode technique to quantify ion fluxes in giant patches, that ion flux ratios are approximately 3.2 for maximal transport in either direction. With Na+ and Ca2+ on both sides of the membrane, net current and Ca2+ flux can reverse at different membrane potentials, and inward current can be generated in the absence of cytoplasmic Ca2+, but not Na+. We propose that NCX1 can transport not only 1 Ca2+ or 3 Na+ ions, but also 1 Ca2+ with 1 Na+ ion at a low rate. Therefore, in addition to the major 3:1 transport mode, import of 1 Na+ with 1 Ca2+ defines a Na+-conducting mode that exports 1 Ca2+, and an electroneutral Ca2+ influx mode that exports 3 Na+. The two minor transport modes can potentially determine resting free Ca2+ and background inward current in heart.


Nature | 2002

Overview of the Alliance for Cellular Signaling

Alfred G. Gilman; Melvin I. Simon; Henry R. Bourne; Bruce A. Harris; Rochelle Long; Elliott M. Ross; James T. Stull; Ronald Taussig; Adam P. Arkin; Melanie H. Cobb; Jason G. Cyster; Peter N. Devreotes; James E. Ferrell; David A. Fruman; Michael Gold; Arthur Weiss; Michael J. Berridge; Lewis C. Cantley; William A. Catterall; Shaun R. Coughlin; Eric N. Olson; Temple F. Smith; Joan S. Brugge; David Botstein; Jack E. Dixon; Tony Hunter; Robert J. Lefkowitz; Anthony J. Pawson; Paul W. Sternberg; Harold E. Varmus

The Alliance for Cellular Signaling is a large-scale collaboration designed to answer global questions about signalling networks. Pathways will be studied intensively in two cells — B lymphocytes (the cells of the immune system) and cardiac myocytes — to facilitate quantitative modelling. One goal is to catalyse complementary research in individual laboratories; to facilitate this, all alliance data are freely available for use by the entire research community.The Alliance for Cellular Signaling is a large-scale collaboration designed to answer global questions about signalling networks. Pathways will be studied intensively in two cells — B lymphocytes (the cells of the immune system) and cardiac myocytes — to facilitate quantitative modelling. One goal is to catalyse complementary research in individual laboratories; to facilitate this, all alliance data are freely available for use by the entire research community.

Collaboration


Dive into the Donald W. Hilgemann's collaboration.

Top Co-Authors

Avatar

Michael Fine

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alp Yaradanakul

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Anthony Collins

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincenzo Lariccia

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mei Jung Lin

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Siyi Feng

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chin Chih Lu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marc C. Llaguno

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Simona Magi

Marche Polytechnic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge