Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donatello Telesca is active.

Publication


Featured researches published by Donatello Telesca.


ACS Nano | 2012

Use of Metal Oxide Nanoparticle Band Gap To Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation

Haiyuan Zhang; Zhaoxia Ji; Tian Xia; Huan Meng; Cecile Low-Kam; Rong Liu; Suman Pokhrel; Sijie Lin; Xiang Wang; Yu-Pei Liao; Meiying Wang; Linjiang Li; Robert Rallo; Robert Damoiseaux; Donatello Telesca; Lutz Mädler; Yoram Cohen; Jeffrey I. Zink; Andre E. Nel

We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (E(c)) levels with the cellular redox potential (-4.12 to -4.84 eV) was strongly correlated to the ability of Co(3)O(4), Cr(2)O(3), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles to induce oxygen radicals, oxidative stress, and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single-parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of C57 BL/6 mice. Co(3)O(4), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by E(c) levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. These results demonstrate that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials.


ACS Nano | 2014

Toxicity Mechanisms in Escherichia coli Vary for Silver Nanoparticles and Differ from Ionic Silver

Angela Ivask; Amro ElBadawy; Chitrada Kaweeteerawat; David Boren; Heidi Fischer; Zhaoxia Ji; Chong Hyun Chang; Rong Liu; Thabet Tolaymat; Donatello Telesca; Jeffrey I. Zink; Yoram Cohen; Patricia A. Holden; Hilary A. Godwin

Silver nanoparticles (Ag NPs) are commonly added to various consumer products and materials to impair bacterial growth. Recent studies suggested that the primary mechanism of antibacterial action of silver nanoparticles is release of silver ion (Ag(+)) and that particle-specific activity of silver nanoparticles is negligible. Here, we used a genome-wide library of Escherichia coli consisting of ∼4000 single gene deletion mutants to elucidate which physiological pathways are involved in how E. coli responds to different Ag NPs. The nanoparticles studied herein varied in both size and surface charge. AgNO3 was used as a control for soluble silver ions. Within a series of differently sized citrate-coated Ag NPs, smaller size resulted in higher Ag ion dissolution and toxicity. Nanoparticles functionalized with cationic, branched polyethylene imine (BPEI) exhibited equal toxicity with AgNO3. When we used a genome-wide approach to investigate the pathways involved in the response of E. coli to different toxicants, we found that only one of the particles (Ag-cit10) exhibited a pattern of response that was statistically similar to that of silver ion. By contrast, the pathways involved in E. coli response to Ag-BPEI particles were more similar to those observed for another cationic nanoparticle that did not contain Ag. Overall, we found that the pathways involved in bacterial responses to Ag nanoparticles are highly dependent on physicochemical properties of the nanoparticles, particularly the surface characteristics. These results have important implications for the regulation and testing of silver nanoparticles.


Environmental Health Perspectives | 2013

Interlaboratory evaluation of in vitro cytotoxicity and inflammatory responses to engineered nanomaterials: the NIEHS Nano GO Consortium.

Tian Xia; Raymond F. Hamilton; James C. Bonner; Edward D. Crandall; Alison Elder; Farnoosh Fazlollahi; Teri Girtsman; Kwang Kim; Somenath Mitra; Susana Addo Ntim; Galya Orr; Mani Tagmount; Alexia J. Taylor; Donatello Telesca; Ana Tolic; Chris D. Vulpe; Andrea J. Walker; Xiang Wang; Frank A. Witzmann; Nianqiang Wu; Yumei Xie; J. I. Zink; Andre E. Nel; Andrij Holian

Background: Differences in interlaboratory research protocols contribute to the conflicting data in the literature regarding engineered nanomaterial (ENM) bioactivity. Objectives: Grantees of a National Institute of Health Sciences (NIEHS)-funded consortium program performed two phases of in vitro testing with selected ENMs in an effort to identify and minimize sources of variability. Methods: Consortium program participants (CPPs) conducted ENM bioactivity evaluations on zinc oxide (ZnO), three forms of titanium dioxide (TiO2), and three forms of multiwalled carbon nanotubes (MWCNTs). In addition, CPPs performed bioassays using three mammalian cell lines (BEAS-2B, RLE-6TN, and THP-1) selected in order to cover two different species (rat and human), two different lung epithelial cells (alveolar type II and bronchial epithelial cells), and two different cell types (epithelial cells and macrophages). CPPs also measured cytotoxicity in all cell types while measuring inflammasome activation [interleukin-1β (IL-1β) release] using only THP-1 cells. Results: The overall in vitro toxicity profiles of ENM were as follows: ZnO was cytotoxic to all cell types at ≥ 50 μg/mL, but did not induce IL-1β. TiO2 was not cytotoxic except for the nanobelt form, which was cytotoxic and induced significant IL-1β production in THP-1 cells. MWCNTs did not produce cytotoxicity, but stimulated lower levels of IL-1β production in THP-1 cells, with the original MWCNT producing the most IL-1β. Conclusions: The results provide justification for the inclusion of mechanism-linked bioactivity assays along with traditional cytotoxicity assays for in vitro screening. In addition, the results suggest that conducting studies with multiple relevant cell types to avoid false-negative outcomes is critical for accurate evaluation of ENM bioactivity.


ACS Nano | 2015

Cu Nanoparticles Have Different Impacts in Escherichia coli and Lactobacillus brevis than Their Microsized and Ionic Analogues

Chitrada Kaweeteerawat; Chong Hyun Chang; Kevin Roy; Rong Liu; Ruibin Li; Daniel B. Toso; Heidi Fischer; Angela Ivask; Zhaoxia Ji; Jeffrey I. Zink; Z. Hong Zhou; Guillaume Chanfreau; Donatello Telesca; Yoram Cohen; Patricia A. Holden; Andre E. Nel; Hilary A. Godwin

Copper formulations have been used for decades for antimicrobial and antifouling applications. With the development of nanoformulations of copper that are more effective than their ionic and microsized analogues, a key regulatory question is whether these materials should be treated as new or existing materials. To address this issue, here we compare the magnitude and mechanisms of toxicity of a series of Cu species (at concentration ranging from 2 to 250 μg/mL), including nano Cu, nano CuO, nano Cu(OH)2 (CuPro and Kocide), micro Cu, micro CuO, ionic Cu(2+) (CuCl2 and CuSO4) in two species of bacteria (Escherichia coli and Lactobacillus brevis). The primary size of the particles studied ranged from 10 nm to 10 μm. Our results reveal that Cu and CuO nanoparticles (NPs) are more toxic than their microsized counterparts at the same Cu concentration, with toxicities approaching those of the ionic Cu species. Strikingly, these NPs showed distinct differences in their mode of toxicity when compared to the ionic and microsized Cu, highlighting the unique toxicity properties of materials at the nanoscale. In vitro DNA damage assays reveal that both nano Cu and microsized Cu are capable of causing complete degradation of plasmid DNA, but electron tomography results show that only nanoformulations of Cu are internalized as intact intracellular particles. These studies suggest that nano Cu at the concentration of 50 μg/mL may have unique genotoxicity in bacteria compared to ionic and microsized Cu.


Molecular Cancer Therapeutics | 2014

The CREB binding protein inhibitor ICG-001 suppresses pancreatic cancer growth

Michael D. Arensman; Donatello Telesca; Anna R. Lay; Kathleen M. Kershaw; Nanping Wu; Timothy R. Donahue; David W. Dawson

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer due in part to a lack of highly robust cytotoxic or molecular-based therapies. Recent studies investigating ligand-mediated Wnt/β-catenin signaling have highlighted its importance in pancreatic cancer initiation and progression, as well as its potential as a therapeutic target in PDAC. The small-molecule ICG-001 binds cAMP-responsive element binding (CREB)-binding protein (CBP) to disrupt its interaction with β-catenin and inhibit CBP function as a coactivator of Wnt/β-catenin–mediated transcription. Given its ability to inhibit Wnt/β-catenin–mediated transcription in vitro and in vivo, as well as its efficacy in preclinical models of colorectal cancer and other Wnt-driven diseases, we examined ICG-001 and its potential role as a therapeutic in PDAC. ICG-001 alone significantly inhibited anchorage-dependent and -independent growth of multiple PDAC lines, and augmented in vitro growth inhibition when used in combination with gemcitabine. ICG-001 had only variable modest effects on PDAC apoptosis and instead mediated PDAC growth inhibition primarily through robust induction of G1 cell-cycle arrest. These effects, however, seemed decoupled from its inhibition of Wnt/β-catenin–mediated transcription. DNA microarrays performed on PDAC cells in the context of ICG-001 treatment revealed ICG-001 altered the expression of several genes with well-established roles in DNA replication and cell-cycle progression, including direct actions on SKP2 and CDKN1A. ICG-001 also significantly prolonged survival in an in vivo orthotopic xenograft model of PDAC, indicating ICG-001 or derived compounds that disrupt CBP activity are potentially useful small-molecule therapeutics for pancreatic cancer. Mol Cancer Ther; 13(10); 2303–14. ©2014 AACR.


Environmental Science & Technology | 2012

Genome-Wide Bacterial Toxicity Screening Uncovers the Mechanisms of Toxicity of a Cationic Polystyrene Nanomaterial

Angela Ivask; Elizabeth Suarez; Trina Patel; David Boren; Zhaoxia Ji; Patricia A. Holden; Donatello Telesca; Robert Damoiseaux; Kenneth A. Bradley; Hilary A. Godwin

By exploiting a genome-wide collection of bacterial single-gene deletion mutants, we have studied the toxicological pathways of a 60-nm cationic (amino-functionalized) polystyrene nanomaterial (PS-NH(2)) in bacterial cells. The IC(50) of commercially available 60 nm PS-NH(2) was determined to be 158 μg/mL, the IC(5) is 108 μg/mL, and the IC(90) is 190 μg/mL for the parent E. coli strain of the gene deletion library. Over 4000 single nonessential gene deletion mutants of Escherichia coli were screened for the growth phenotype of each strain in the presence and absence of PS-NH(2). This revealed that genes clusters in the lipopolysaccharide biosynthetic pathway, outer membrane transport channels, ubiquinone biosynthetic pathways, flagellar movement, and DNA repair systems are all important to how this organism responds to cationic nanomaterials. These results, coupled with those from confirmatory assays described herein, suggest that the primary mechanisms of toxicity of the 60-nm PS-NH(2) nanomaterial in E. coli are destabilization of the outer membrane and production of reactive oxygen species. The methodology reported herein should prove generally useful for identifying pathways that are involved in how cells respond to a broad range of nanomaterials and for determining the mechanisms of cellular toxicity of different types of nanomaterials.


Drug and Alcohol Review | 2013

Cigarette smoking as a target for potentiating outcomes for methamphetamine abuse treatment

Matthew Brensilver; Keith G. Heinzerling; Aimee-Noelle Swanson; Donatello Telesca; Benjamin A. Furst; Steven Shoptaw

INTRODUCTION AND AIMS Cigarette smoking occurs frequently among individuals with methamphetamine (MA) dependence. Preclinical and clinical evidence has suggested that the common co-abuse of MA and cigarettes represents a pharmacologically meaningful pattern. METHODS The present study is a secondary analysis of a randomised, placebo-controlled trial of bupropion treatment for MA dependence (bupropion n = 36; placebo n = 37). A hierarchical logistic modelling approach assessed the efficacy of bupropion for reducing MA use separately among smokers and non-smokers. Among smokers, relations between cigarettes smoked and MA use were assessed. RESULTS Smoking status did not affect treatment responsiveness in either the bupropion condition or the placebo condition. In the placebo condition, increased cigarette use was associated with an increased probability of MA use during the same time period. This effect was not observed in the bupropion condition. DISCUSSION AND CONCLUSIONS Initial smoking status did not impact treatment outcomes. Among smokers, results suggest that bupropion may dissociate cigarette and MA use. The effect was modest and a precise pharmacological mechanism remains elusive. Cholinergic systems may be relevant for MA use outcomes. Future studies should continue to assess the role of smoking in MA treatment outcomes.


RSC Advances | 2016

Nano-QSAR modeling for predicting the cytotoxicity of metal oxide nanoparticles using novel descriptors

Yong Pan; Ting Li; Jie Cheng; Donatello Telesca; Jeffrey I. Zink; Juncheng Jiang

Computational approaches have evolved as efficient alternatives to understand the adverse effects of nanoparticles on human health and the environment. The potential of using Quantitative Structure–Activity Relationship (QSAR) modeling to establish statistically significant models for predicting the cytotoxicity of various metal oxide (MeOx) nanoparticles (NPs) has been investigated. A novel kind of nanospecific theoretical descriptor was proposed by integrating codes of certain physicochemical features into SMILES-based optimal descriptors to characterize the nanostructure information of NPs. The new descriptors were then applied to model MeOx NP cytotoxicity to both Escherichia coli bacteria and HaCaT cells for comparison purposes. The effects of size variation on the cytotoxicity to both types of cells were also investigated. The four resulting QSAR models were then rigorously validated, and extensively compared to other previously published models. The results demonstrated the robustness, validity and predictivity of these models. Predominant nanostructure factors responsible for MeOx NP cytotoxicity were identified through model interpretation. The results verified different mechanisms of nanotoxicity for these two types of cells. The proposed models can be expected to reliably predict the cytotoxicity of novel NPs solely from the newly developed descriptors, and provide guidance for prioritizing the design and manufacture of safer nanomaterials with desired properties.


PLOS Genetics | 2016

Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function.

Yichang Chen; Le Shu; Zhiqun Qiu; Dong Yeon Lee; Sara J. Settle; Shane S. Que Hee; Donatello Telesca; Xia Yang; Patrick Allard

Concerns about the safety of Bisphenol A, a chemical found in plastics, receipts, food packaging and more, have led to its replacement with substitutes now found in a multitude of consumer products. However, several popular BPA-free alternatives, such as Bisphenol S, share a high degree of structural similarity with BPA, suggesting that these substitutes may disrupt similar developmental and reproductive pathways. We compared the effects of BPA and BPS on germline and reproductive functions using the genetic model system Caenorhabditis elegans. We found that, similarly to BPA, BPS caused severe reproductive defects including germline apoptosis and embryonic lethality. However, meiotic recombination, targeted gene expression, whole transcriptome and ontology analyses as well as ToxCast data mining all indicate that these effects are partly achieved via mechanisms distinct from BPAs. These findings therefore raise new concerns about the safety of BPA alternatives and the risk associated with human exposure to mixtures.


The Annals of Applied Statistics | 2012

Modeling dependent gene expression

Donatello Telesca; Peter Müller; Giovanni Parmigiani; Ralph S. Freedman

In this paper we propose a Bayesian approach for inference about dependence of high throughput gene expression. Our goals are to use prior knowledge about pathways to anchor inference about dependence among genes; to account for this dependence while making inferences about differences in mean expression across phenotypes; and to explore differences in the dependence itself across phenotypes. Useful features of the proposed approach are a model-based parsimonious representation of expression as an ordinal outcome, a novel and flexible representation of prior information on the nature of dependencies, and the use of a coherent probability model over both the structure and strength of the dependencies of interest. We evaluate our approach through simulations and in the analysis of data on expression of genes in the Complement and Coagulation Cascade pathway in ovarian cancer.

Collaboration


Dive into the Donatello Telesca's collaboration.

Top Co-Authors

Avatar

Andre E. Nel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhaoxia Ji

University of California

View shared research outputs
Top Co-Authors

Avatar

Peter Müller

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rong Liu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge