Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dong H. Cha is active.

Publication


Featured researches published by Dong H. Cha.


Journal of Chemical Ecology | 2008

Identification and Field Evaluation of Grape Shoot Volatiles Attractive to Female Grape Berry Moth (Paralobesia viteana)

Dong H. Cha; Satoshi Nojima; Stephen P. Hesler; Aijun Zhang; Charles E. Linn; Wendell L. Roelofs; Gregory M. Loeb

Solid-phase microextraction (SPME) and gas chromatography coupled with electroantennographic detection (GC-EAD) were used to identify volatile compounds from shoots of riverbank grape (Vitis riparia) that attract the female grape berry moth (GBM, Paralobesia viteana). Consistent EAD activity was obtained for 11 chemicals: (Z)-3-hexen-1-yl acetate, (E)-linalool oxide, (Z)-linalool oxide, nonanal, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate, decanal, β-caryophyllene, germacrene-D, and α-farnesene. In flight-tunnel tests that involved female GBM and rubber septa loaded with subsets of these 11 compounds, we found that both the 11-component blend and a seven-component blend, composed of (E)-linalool oxide, (Z)-linalool oxide, nonanal, (E)-4,8-dimethyl-1,3,7-nonatriene, decanal, β-caryophyllene and germacrene-D, elicited equivalent levels of upwind flight as freshly cut grape shoots. The removal of any of the seven compounds from the seven-component blend resulted in a significant decrease in female upwind flight responses. In a field trial with these two synthetic blends, traps equipped with either blend captured more female GBM compared to traps baited with hexane only (control), although the number of females caught was generally low. There were no differences in the number of males captured among treatments. Although in flight-tunnel trials, moths readily flew upwind to both grape shoots and rubber septa loaded with the best lures, they landed on shoots but not on rubber septa. Coupled with relatively low field catches, this suggests that additional host finding cues need to be identified to improve trap efficacy.


Pest Management Science | 2014

A four-component synthetic attractant for Drosophila suzukii (Diptera: Drosophilidae) isolated from fermented bait headspace

Dong H. Cha; Todd Adams; Christopher T. Werle; Blair J. Sampson; John J. Adamczyk; Helmuth Rogg; Peter J. Landolt

BACKGROUND A mixture of wine and vinegar is more attractive than wine or vinegar to spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), and ethanol and acetic acid are considered key to that attractiveness. In addition to ethanol and acetic acid, 13 other wine and vinegar volatiles are antennally active to D. suzukii and might be involved in food finding. RESULTS Out of the 13 antennally active chemicals, acetoin, ethyl lactate and methionol increased fly response to a mixture of acetic acid and ethanol in field trapping experiments. A five-component blend of acetic acid, ethanol, acetoin, ethyl lactate and methionol was as attractive as the starting mixture of wine and vinegar in field tests conducted in the states of Oregon and Mississippi. Subtracting ethyl lactate from the five-component blend did not reduce the captures of flies in the trap. However, subtracting any other compound from the blend significantly reduced the numbers of flies captured. CONCLUSION These results indicate that acetic acid, ethanol, acetoin and methionol are key olfactory cues for D. suzukii when attracted to wine and vinegar, which may be food-finding behavior leading flies to fermenting fruit in nature. It is anticipated that this four-component blend can be used as a highly attractive chemical lure for detection and management of D. suzukii. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.


PLOS ONE | 2011

Eavesdropping on Plant Volatiles by a Specialist Moth: Significance of Ratio and Concentration

Dong H. Cha; Charles E. Linn; Peter E. A. Teal; Aijun Zhang; Wendell L. Roelofs; Gregory M. Loeb

We investigated the role that the ratio and concentration of ubiquitous plant volatiles play in providing host specificity for the diet specialist grape berry moth Paralobesia viteana (Clemens) in the process of locating its primary host plant Vitis sp. In the first flight tunnel experiment, using a previously identified attractive blend with seven common but essential components (“optimized blend”), we found that doubling the amount of six compounds singly [(E)- & (Z)-linalool oxides, nonanal, decanal, β-caryophyllene, or germacrene-D], while keeping the concentration of other compounds constant, significantly reduced female attraction (average 76% full and 59% partial upwind flight reduction) to the synthetic blends. However, doubling (E)-4,8-dimethyl 1,3,7-nonatriene had no effect on female response. In the second experiment, we manipulated the volatile profile more naturally by exposing clonal grapevines to Japanese beetle feeding. In the flight tunnel, foliar damage significantly reduced female landing on grape shoots by 72% and full upwind flight by 24%. The reduction was associated with two changes: (1) more than a two-fold increase in total amount of the seven essential volatile compounds, and (2) changes in their relative ratios. Compared to the optimized blend, synthetic blends mimicking the volatile ratio emitted by damaged grapevines resulted in an average of 87% and 32% reduction in full and partial upwind orientation, respectively, and the level of reduction was similar at both high and low doses. Taken together, these results demonstrate that the specificity of a ubiquitous volatile blend is determined, in part, by the ratio of key volatile compounds for this diet specialist. However, P. viteana was also able to accommodate significant variation in the ratio of some compounds as well as the concentration of the overall mixture. Such plasticity may be critical for phytophagous insects to successfully eavesdrop on variable host plant volatile signals.


Environmental Entomology | 2013

Comparison of a Synthetic Chemical Lure and Standard Fermented Baits for Trapping Drosophila suzukii (Diptera: Drosophilidae)

Dong H. Cha; Stephen P. Hesler; Richard S. Cowles; Heidrun Vogt; Gregory M. Loeb; Peter J. Landolt

ABSTRACT We determined the attractiveness of a new chemical lure compared with fermented food baits in use for trapping Drosophila suzukii Matsumura, spotted wing drosophila (Diptera: Drosophilidae), in Connecticut, New York, and Washington in the United States and at Dossenheim in Germany. The chemical lure (SWD lure) and food baits were compared in two types of traps: the dome trap and a cup trap. Regardless of trap type, numbers of male and female D. suzukii trapped were greater with the SWD lure compared with apple cider vinegar (ACV) baits at the Washington and New York sites, and were comparable with numbers of D. suzukii captured with a wine plus vinegar bait (W + V) at Germany site and a combination bait meant to mimic W + V at the Connecticut site. Averaged over both types of attractants, the numbers of D. suzukii captured were greater in dome traps than in cup traps in New York and Connecticut for both male and female D. suzukii and in Washington for male D. suzukii. No such differences were found between trap types at the Washington site for female and Germany for male and female D. suzukii. Assessments were also made of the number of large (>0.5cm) and small (<0.5cm) nontarget flies trapped. The SWD lure captured fewer nontarget small flies and more large flies compared with ACV bait in New York and fewer nontarget small flies compared with W + V in Germany, although no such differences were found in Washington for the SWD lure versus ACV bait and in Connecticut for the SWD lure versus the combination bait, indicating that these effects are likely influenced by the local nontarget insect community active at the time of trapping. In New York, Connecticut, and Germany, dome traps caught more nontarget flies compared with cup traps. Our results suggest that the four-component SWD chemical lure is an effective attractant for D. suzukii and could be used in place of fermented food-type baits.


Journal of Chemical Ecology | 2008

Flight tunnel responses of female grape berry moth (Paralobesia viteana) to host plants.

Dong H. Cha; Stephen P. Hesler; Charles L. Moser; Satoshi Nojima; Charles E. Linn; Wendell L. Roelofs; Gregory M. Loeb

Semiochemicals play important roles in mate and host recognition of herbivorous insects, such as moths, and flight tunnels have been an effective tool in the identification of these bioactive compounds. However, more work has been carried out on pheromones than on host plant cues, and few examples exist where flight tunnel evaluations of host cues have resulted in a lure that is attractive under field conditions. Our goal was to determine whether the flight tunnel could be used to evaluate the response of a specialist moth, grape berry moth (GBM), to its host plant (grapevines), by incorporating ecological and physiological aspects of GBM biology. We found grape shoot tips and mature leaves were more attractive to female GBM than unripe and ripe berries or flowers. Under optimized flight tunnel conditions, approximately 80% of tested females flew upwind and closely approached or landed on the most preferred target. Mating status, wind speed, the time of day, and the presence/absence of patterns that resemble grape tissues on the top of the flight tunnel all significantly affected the responses of female GBM. Consideration of these factors in flight tunnel assays will aid in the development of a synthetic lure that can be used to monitor female moths in the field.


Entomologia Experimentalis Et Applicata | 2015

Simpler is better: fewer non‐target insects trapped with a four‐component chemical lure vs. a chemically more complex food‐type bait for Drosophila suzukii

Dong H. Cha; Stephen P. Hesler; Shinyoung Park; Todd Adams; Richard S. Zack; Helmuth Rogg; Gregory M. Loeb; Peter J. Landolt

Baits – fermented food products – are generally attractive to many types of insects, which makes it difficult to sort through non‐target insects to monitor a pest species of interest. We test the hypothesis that a chemically simpler and more defined attractant developed for a target insect is more specific and attracts fewer non‐target insects than a chemically more complex food‐type bait. A four‐component chemical lure isolated from a food bait and optimized for the spotted wing drosophila (SWD), Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), was compared to the original wine/vinegar bait to assess the relative responses of non‐target insects. In several field experiments in Washington State, USA, it was shown that numbers of pest muscid flies, cutworm and armyworm moths, and pest yellowjackets were reduced in traps baited with the chemical lure compared to the wine/vinegar bait. In other field experiments in the states of Washington, Oregon, and New York, numbers of non‐target drosophilid flies were also reduced in traps baited with the chemical lure relative to wine/vinegar bait. In Washington, numbers of Drosophila melanogaster Meigen and Drosophila obscura Fallen species groups and Drosophila immigrans Sturtevant were reduced in the chemical lure traps, whereas in New York, D. melanogaster and D. obscura species groups, D. immigrans, Drosophila putrida Sturtevant, Drosophila simulans Sturtevant, Drosophila tripunctata Loew, and Chymomyza spp. numbers were reduced. In Oregon, this same effect was observed with the D. melanogaster species group. Taken together, these results indicate that the four‐component SWD chemical lure will be more selective for SWD compared to fermentation baits, which should reduce time and cost involved in trapping in order to monitor SWD.


Pest Management Science | 2016

Behavioral response of spotted-wing drosophila, Drosophila suzukii Matsumura, to aversive odors and a potential oviposition deterrent in the field.

Anna Wallingford; Stephen P. Hesler; Dong H. Cha; Gregory M. Loeb

BACKGROUND Drosophilia suzukii Matsumura is an invasive pest insect that lays its eggs in the fruit of several commercially grown crops. An effective oviposition deterrent could contribute to its management. Repellant odors were evaluated in the laboratory and in the field. RESULTS Geosmin and 1-octen-3-ol were found to be aversive to seven-day-old female D. suzukii at concentrations of 10(-1) and 10(-2) in laboratory choice tests. Field experiments found that fewer eggs were observed in fruit on the day of harvest and fewer adult D. suzukii were reared from fruit associated with 1-octen-3-ol odors than control fruit in cultivated red raspberry. CONCLUSION Geosmin and 1-octen-3-ol induce aversive behaviors in Drosophila suzukii and are potential oviposition deterrents for its management in fruit crops.


Evolution | 2012

BEHAVIORAL EVIDENCE FOR FRUIT ODOR DISCRIMINATION AND SYMPATRIC HOST RACES OF RHAGOLETIS POMONELLA FLIES IN THE WESTERN UNITED STATES

Charles E. Linn; Wee L. Yee; Sheina B. Sim; Dong H. Cha; Thomas H. Q. Powell; Robert B. Goughnour; Jeffrey L. Feder

The recent shift of Rhagoletis pomonella (Diptera: Tephritidae) from its native host downy hawthorn, Crataegus mollis, to introduced domesticated apple, Malus domestica, in the eastern United States is a model for sympatric host race formation. However, the fly is also present in the western United States, where it may have been introduced via infested apples within the last 60 years. In addition to apple, R. pomonella also infests two hawthorns in the West, one the native black hawthorn, C. douglasii, and the other the introduced English ornamental hawthorn, C. monogyna. Here, we test for behavioral evidence of host races in the western United States. through flight tunnel assays of western R. pomonella flies to host fruit volatile blends. We report that western apple, black hawthorn, and ornamental hawthorn flies showed significantly increased levels of upwind‐directed flight to their respective natal compared to nonnatal fruit volatile blends, consistent with host race status. We discuss the implications of the behavioral results for the origin(s) of western R. pomonella, including the possibility that western apple flies were not introduced, but may represent a recent shift from local hawthorn fly populations.


Evolution | 2012

ON THE SCENT OF STANDING VARIATION FOR SPECIATION: BEHAVIORAL EVIDENCE FOR NATIVE SYMPATRIC HOST RACES OF RHAGOLETIS POMONELLA (DIPTERA: TEPHRITIDAE) IN THE SOUTHERN UNITED STATES

Thomas H. Q. Powell; Dong H. Cha; Charles E. Linn; Jeffrey L. Feder

Standing variation can be critical for speciation. Here, we investigate the origins of fruit odor discrimination for Rhagoletis pomonella underlying the flys sympatric shift in the northeastern United States from downy hawthorn (Crataegus mollis) to apple (Malus domestica). Because R. pomonella mate on host fruit, preferences for natal fruit volatiles generate prezygotic isolation. Apples emit volatiles that appear to be missing from gas chromatography/electroantennographic detection profiles for flies infesting downy hawthorns, raising the question of how R. pomonella evolved a preference for apple. In the southern United States, R. pomonella attacks several native hawthorns. Behaviorally active volatile blends for R. pomonella infesting southern hawthorns contain the missing apple volatiles, potentially explaining why downy hawthorn flies could have evolved to be sensitive to a blend of apple volatiles. Flight tunnel assays imply that southern hawthorn populations were not the antecedent of a preassembled apple race, as southern flies were not attracted to the apple volatile blend. Instead, behavioral evidence was found for southern host races on native hawthorns, complementing the story of the historical sympatric shift to introduced apple in the North and illustrating how R. pomonella may evolve novel combinations of agonist and antagonist responses to volatiles to use new fruit resources.


Journal of Evolutionary Biology | 2012

A field test for host fruit odour discrimination and avoidance behaviour for Rhagoletis pomonella flies in the western United States

Sheina B. Sim; M. Mattsson; Jasmine L. Feder; Dong H. Cha; Wee L. Yee; Robert B. Goughnour; Charles E. Linn; Jeffrey L. Feder

Prezygotic isolation due to habitat choice is important to many models of speciation‐with‐gene‐flow. Habitat choice is usually thought to occur through positive preferences of organisms for particular environments. However, avoidance of non‐natal environments may also play a role in choice and have repercussions for post‐zygotic isolation that preference does not. The recent host shift of Rhagoletis pomonella (Diptera: Tephritidae) from downy hawthorn, Crataegus mollis, to introduced apple, Malus domestica, in the eastern United States is a model for speciation‐with‐gene‐flow. However, the fly is also present in the western United States where it was likely introduced via infested apples ≤ 60 years ago. R. pomonella now attacks two additional hawthorns in the west, the native C. douglasii (black hawthorn) and the introduced C. monogyna (English ornamental hawthorn). Flight tunnel tests have shown that western apple‐, C. douglasii‐ and C. monogyna‐origin flies all positively orient to fruit volatile blends of their respective natal hosts in flight tunnel assays. Here, we show that these laboratory differences translate to nature through field‐trapping studies of flies in the state of Washington. Moreover, western R. pomonella display both positive orientation to their respective natal fruit volatiles and avoidance behaviour (negative orientation) to non‐natal volatiles. Our results are consistent with the existence of behaviourally differentiated host races of R. pomonella in the west. In addition, the rapid evolution of avoidance behaviour appears to be a general phenomenon for R. pomonella during host shifts, as the eastern apple and downy hawthorn host races also are antagonized by non‐natal fruit volatiles.

Collaboration


Dive into the Dong H. Cha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Landolt

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wee L. Yee

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aijun Zhang

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge