Gregory M. Loeb
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory M. Loeb.
Journal of Chemical Ecology | 2008
Dong H. Cha; Satoshi Nojima; Stephen P. Hesler; Aijun Zhang; Charles E. Linn; Wendell L. Roelofs; Gregory M. Loeb
Solid-phase microextraction (SPME) and gas chromatography coupled with electroantennographic detection (GC-EAD) were used to identify volatile compounds from shoots of riverbank grape (Vitis riparia) that attract the female grape berry moth (GBM, Paralobesia viteana). Consistent EAD activity was obtained for 11 chemicals: (Z)-3-hexen-1-yl acetate, (E)-linalool oxide, (Z)-linalool oxide, nonanal, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate, decanal, β-caryophyllene, germacrene-D, and α-farnesene. In flight-tunnel tests that involved female GBM and rubber septa loaded with subsets of these 11 compounds, we found that both the 11-component blend and a seven-component blend, composed of (E)-linalool oxide, (Z)-linalool oxide, nonanal, (E)-4,8-dimethyl-1,3,7-nonatriene, decanal, β-caryophyllene and germacrene-D, elicited equivalent levels of upwind flight as freshly cut grape shoots. The removal of any of the seven compounds from the seven-component blend resulted in a significant decrease in female upwind flight responses. In a field trial with these two synthetic blends, traps equipped with either blend captured more female GBM compared to traps baited with hexane only (control), although the number of females caught was generally low. There were no differences in the number of males captured among treatments. Although in flight-tunnel trials, moths readily flew upwind to both grape shoots and rubber septa loaded with the best lures, they landed on shoots but not on rubber septa. Coupled with relatively low field catches, this suggests that additional host finding cues need to be identified to improve trap efficacy.
Environmental Entomology | 2015
Hannah J. Burrack; Mark K. Asplen; Luz D. Bahder; J. A. Collins; Francis A. Drummond; Christelle Guédot; Rufus Isaacs; Donn T. Johnson; Anna Blanton; Jana C. Lee; Gregory M. Loeb; Cesar Rodriguez-Saona; Steven Van Timmeren; Douglas B. Walsh; Douglas R. McPhie
ABSTRACT Drosophila suzukii Matsumara, also referred to as the spotted wing drosophila, has recently expanded its global range with significant consequences for its primary host crops: blueberries, blackberries, raspberries, cherries, and strawberries. D. suzukii populations can increase quickly, and their infestation is difficult to predict and prevent. The development of effective tools to detect D. suzukii presence in new areas, to time the beginning of activity within a crop, to track seasonal activity patterns, and to gauge the effectiveness of management efforts has been a key research goal. We compared the efficiency, selectivity, and relationship to fruit infestation of a range of commonly used homemade baits and a synthetic formulated lure across a wide range of environments in 10 locations throughout the United States. Several homemade baits were more efficient than apple cider vinegar, a commonly used standard, and a commercially formulated lure was, in some configurations and environments, comparable with the most effective homemade attractant as well as potentially more selective. All alternative attractants also captured flies between 1 and 2 wk earlier than apple cider vinegar, and detected the presence of D. suzukii prior to the development of fruit infestation. Over half the Drosophila spp. flies captured in traps baited with any of the attractants were not D. suzukii, which may complicate their adoption by nonexpert users. The alternative D. suzukii attractants tested are improvement on apple cider vinegar and may be useful in the development of future synthetic lures.
Plant Disease | 2009
Marc Fuchs; Timothy E. Martinson; Gregory M. Loeb; H. C. Hoch
Vineyards in the Finger Lakes region in New York were surveyed for the three major viruses associated with leafroll disease, i.e., Grapevine leafroll-associated virus 1 (GLRaV-1), Grapevine leafroll-associated virus 2 (GLRaV-2), and Grapevine leafroll-associated virus 3 (GLRaV-3). Target viruses were detected in nearly two-thirds (68%, 65 of 95) of the vineyard blocks surveyed by enzyme-linked immunosorbent assay. Single infections by GLRaV-1, GLRaV-2, and GLRaV-3 occurred in 10% (113 of 1,124), 3% (36 of 1,124), and 15% (173 of 1,124) of the samples tested, respectively, whereas mixed infections affected 3.6% (40 of 1,124) of them, essentially with GLRaV-1 and GLRaV-3 (2.5%, 28 of 1,124). Presence of the target viruses was confirmed in selected samples by reverse transcription-polymerase chain reaction and sequencing. Comparative analysis indicated moderate to high nucleotide sequence identities in the second diverged copy of the GLRaV-1 coat protein gene (81.0 to 86.7%), GLRaV-2 coat protein gene (87.6 to 99.2%), and GLRaV-3 heat shock protein 70 homologue gene (91.5 to 98.3%) of New York isolates with corresponding virus reference strains. The prevalence of the three major leafroll disease-associated viruses in Finger Lakes vineyards results likely from poor sanitary status of planting materials, stressing the need to reinstate a certification program in New York.
PLOS ONE | 2011
Dong H. Cha; Charles E. Linn; Peter E. A. Teal; Aijun Zhang; Wendell L. Roelofs; Gregory M. Loeb
We investigated the role that the ratio and concentration of ubiquitous plant volatiles play in providing host specificity for the diet specialist grape berry moth Paralobesia viteana (Clemens) in the process of locating its primary host plant Vitis sp. In the first flight tunnel experiment, using a previously identified attractive blend with seven common but essential components (“optimized blend”), we found that doubling the amount of six compounds singly [(E)- & (Z)-linalool oxides, nonanal, decanal, β-caryophyllene, or germacrene-D], while keeping the concentration of other compounds constant, significantly reduced female attraction (average 76% full and 59% partial upwind flight reduction) to the synthetic blends. However, doubling (E)-4,8-dimethyl 1,3,7-nonatriene had no effect on female response. In the second experiment, we manipulated the volatile profile more naturally by exposing clonal grapevines to Japanese beetle feeding. In the flight tunnel, foliar damage significantly reduced female landing on grape shoots by 72% and full upwind flight by 24%. The reduction was associated with two changes: (1) more than a two-fold increase in total amount of the seven essential volatile compounds, and (2) changes in their relative ratios. Compared to the optimized blend, synthetic blends mimicking the volatile ratio emitted by damaged grapevines resulted in an average of 87% and 32% reduction in full and partial upwind orientation, respectively, and the level of reduction was similar at both high and low doses. Taken together, these results demonstrate that the specificity of a ubiquitous volatile blend is determined, in part, by the ratio of key volatile compounds for this diet specialist. However, P. viteana was also able to accommodate significant variation in the ratio of some compounds as well as the concentration of the overall mixture. Such plasticity may be critical for phytophagous insects to successfully eavesdrop on variable host plant volatile signals.
Environmental Entomology | 2013
Dong H. Cha; Stephen P. Hesler; Richard S. Cowles; Heidrun Vogt; Gregory M. Loeb; Peter J. Landolt
ABSTRACT We determined the attractiveness of a new chemical lure compared with fermented food baits in use for trapping Drosophila suzukii Matsumura, spotted wing drosophila (Diptera: Drosophilidae), in Connecticut, New York, and Washington in the United States and at Dossenheim in Germany. The chemical lure (SWD lure) and food baits were compared in two types of traps: the dome trap and a cup trap. Regardless of trap type, numbers of male and female D. suzukii trapped were greater with the SWD lure compared with apple cider vinegar (ACV) baits at the Washington and New York sites, and were comparable with numbers of D. suzukii captured with a wine plus vinegar bait (W + V) at Germany site and a combination bait meant to mimic W + V at the Connecticut site. Averaged over both types of attractants, the numbers of D. suzukii captured were greater in dome traps than in cup traps in New York and Connecticut for both male and female D. suzukii and in Washington for male D. suzukii. No such differences were found between trap types at the Washington site for female and Germany for male and female D. suzukii. Assessments were also made of the number of large (>0.5cm) and small (<0.5cm) nontarget flies trapped. The SWD lure captured fewer nontarget small flies and more large flies compared with ACV bait in New York and fewer nontarget small flies compared with W + V in Germany, although no such differences were found in Washington for the SWD lure versus ACV bait and in Connecticut for the SWD lure versus the combination bait, indicating that these effects are likely influenced by the local nontarget insect community active at the time of trapping. In New York, Connecticut, and Germany, dome traps caught more nontarget flies compared with cup traps. Our results suggest that the four-component SWD chemical lure is an effective attractant for D. suzukii and could be used in place of fermented food-type baits.
Phytopathology | 2009
Marc Fuchs; P. Marsella-Herrick; Gregory M. Loeb; Timothy E. Martinson; H. C. Hoch
The occurrence and diversity of Grapevine leafroll-associated virus 1 (GLRaV-1) and Grapevine leafroll-associated virus 3 (GLRaV-3) in the soft scales Parthenolecanium corni and Pulvinaria innumerabilis and in the mealybug Pseudococcus maritimus was determined in leafroll-affected vineyards in the Finger Lakes region of New York. Groups of 1 to 4 specimens were collected under loose grapevine bark and tested by reverse-transcription polymerase chain reaction (RT-PCR) for segments of the second diverged copy of the GLRaV-1 coat protein gene or GLRaV-3 heat-shock protein 70-homologue gene. Virus-specific RT-PCR products were amplified from immature insect vectors and adult mealybugs. Single viral amplicons were obtained mostly from immature vectors (35%, 30 of 85) and dual viral amplicons from immature (16%, 10 of 61) and adult (100%, 14 of 14) mealybugs, including individuals. These observations suggested a simultaneous uptake of GLRaV-1 and GLRaV-3 by individual mealybugs. Furthermore, a comparative nucleotide sequence analysis of viral amplicons from soft scales, mealybugs, and grapevines from which vectors were collected showed identical or highly similar haplotypes, indicating that uptake of GLRaV-1 and GLRaV-3 likely occurred by direct feeding of vectors on their host plants.
Molecular Biology and Evolution | 2017
Antoine Fraimout; Vincent Debat; Simon Fellous; Ruth A. Hufbauer; Julien Foucaud; Pierre Pudlo; Jean-Michel Marin; Donald K. Price; Julien Cattel; Xiao Chen; Maríndia Deprá; Pierre François Duyck; Christelle Guédot; Marc Kenis; Masahito T. Kimura; Gregory M. Loeb; Anne Loiseau; Isabel Martinez-Sañudo; Marta Pascual; Maxi Polihronakis Richmond; Peter Shearer; Nadia Singh; Koichiro Tamura; A. Xuéreb; Jinping Zhang; Arnaud Estoup
Abstract Deciphering invasion routes from molecular data is crucial to understanding biological invasions, including identifying bottlenecks in population size and admixture among distinct populations. Here, we unravel the invasion routes of the invasive pest Drosophila suzukii using a multi-locus microsatellite dataset (25 loci on 23 worldwide sampling locations). To do this, we use approximate Bayesian computation (ABC), which has improved the reconstruction of invasion routes, but can be computationally expensive. We use our study to illustrate the use of a new, more efficient, ABC method, ABC random forest (ABC-RF) and compare it to a standard ABC method (ABC-LDA). We find that Japan emerges as the most probable source of the earliest recorded invasion into Hawaii. Southeast China and Hawaii together are the most probable sources of populations in western North America, which then in turn served as sources for those in eastern North America. European populations are genetically more homogeneous than North American populations, and their most probable source is northeast China, with evidence of limited gene flow from the eastern US as well. All introduced populations passed through bottlenecks, and analyses reveal five distinct admixture events. These findings can inform hypotheses concerning how this species evolved between different and independent source and invasive populations. Methodological comparisons indicate that ABC-RF and ABC-LDA show concordant results if ABC-LDA is based on a large number of simulated datasets but that ABC-RF out-performs ABC-LDA when using a comparable and more manageable number of simulated datasets, especially when analyzing complex introduction scenarios.
Journal of Economic Entomology | 2015
Richard S. Cowles; Cesar Rodriguez-Saona; Robert Holdcraft; Gregory M. Loeb; Johanna E. Elsensohn; Steven P. Hesler
ABSTRACT The addition of sucrose to insecticides targeting spotted wing drosophila, Drosophila suzukii (Matsumura), enhanced lethality in laboratory, semifield, and field tests. In the laboratory, 0.1% sucrose added to a spray solution enhanced spotted wing drosophila feeding. Flies died 120 min earlier when exposed to spinosad residues at label rates enhanced with sucrose. Added sucrose reduced the LC50 for dried acetamiprid residues from 82 to 41 ppm in the spray solution. Laboratory bioassays of spotted wing drosophila mortality followed exposure to grape and blueberry foliage and/or fruit sprayed and aged in the field. On grape foliage, the addition of 2.4 g/liter of sugar with insecticide sprays resulted in an 11 and 6% increase of spotted wing drosophila mortality at 1 and 2 d exposures to residues, respectively, averaged over seven insecticides with three concentrations. In a separate experiment, spinetoram and cyantraniliprole reduced by 95–100% the larval infestation of blueberries, relative to the untreated control, 7 d after application at labeled rates when applied with 1.2 g/liter sucrose in a spray mixture, irrespective of rainfall; without sucrose infestation was reduced by 46–91%. Adding sugar to the organically acceptable spinosyn, Entrust, reduced larval infestation of strawberries by >50% relative to without sugar for five of the six sample dates during a season-long field trial. In a small-plot field test with blueberries, weekly applications in alternating sprays of sucrose plus reduced-risk insecticides, spinetoram or acetamiprid, reduced larval infestation relative to the untreated control by 76%; alternating bifenthrin and phosmet (without sucrose) reduced infestation by 65%.
Journal of Chemical Ecology | 2008
Dong H. Cha; Stephen P. Hesler; Charles L. Moser; Satoshi Nojima; Charles E. Linn; Wendell L. Roelofs; Gregory M. Loeb
Semiochemicals play important roles in mate and host recognition of herbivorous insects, such as moths, and flight tunnels have been an effective tool in the identification of these bioactive compounds. However, more work has been carried out on pheromones than on host plant cues, and few examples exist where flight tunnel evaluations of host cues have resulted in a lure that is attractive under field conditions. Our goal was to determine whether the flight tunnel could be used to evaluate the response of a specialist moth, grape berry moth (GBM), to its host plant (grapevines), by incorporating ecological and physiological aspects of GBM biology. We found grape shoot tips and mature leaves were more attractive to female GBM than unripe and ripe berries or flowers. Under optimized flight tunnel conditions, approximately 80% of tested females flew upwind and closely approached or landed on the most preferred target. Mating status, wind speed, the time of day, and the presence/absence of patterns that resemble grape tissues on the top of the flight tunnel all significantly affected the responses of female GBM. Consideration of these factors in flight tunnel assays will aid in the development of a synthetic lure that can be used to monitor female moths in the field.
Entomologia Experimentalis Et Applicata | 2015
Dong H. Cha; Stephen P. Hesler; Shinyoung Park; Todd Adams; Richard S. Zack; Helmuth Rogg; Gregory M. Loeb; Peter J. Landolt
Baits – fermented food products – are generally attractive to many types of insects, which makes it difficult to sort through non‐target insects to monitor a pest species of interest. We test the hypothesis that a chemically simpler and more defined attractant developed for a target insect is more specific and attracts fewer non‐target insects than a chemically more complex food‐type bait. A four‐component chemical lure isolated from a food bait and optimized for the spotted wing drosophila (SWD), Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), was compared to the original wine/vinegar bait to assess the relative responses of non‐target insects. In several field experiments in Washington State, USA, it was shown that numbers of pest muscid flies, cutworm and armyworm moths, and pest yellowjackets were reduced in traps baited with the chemical lure compared to the wine/vinegar bait. In other field experiments in the states of Washington, Oregon, and New York, numbers of non‐target drosophilid flies were also reduced in traps baited with the chemical lure relative to wine/vinegar bait. In Washington, numbers of Drosophila melanogaster Meigen and Drosophila obscura Fallen species groups and Drosophila immigrans Sturtevant were reduced in the chemical lure traps, whereas in New York, D. melanogaster and D. obscura species groups, D. immigrans, Drosophila putrida Sturtevant, Drosophila simulans Sturtevant, Drosophila tripunctata Loew, and Chymomyza spp. numbers were reduced. In Oregon, this same effect was observed with the D. melanogaster species group. Taken together, these results indicate that the four‐component SWD chemical lure will be more selective for SWD compared to fermentation baits, which should reduce time and cost involved in trapping in order to monitor SWD.