Dong-Ha Oh
Louisiana State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dong-Ha Oh.
Nature Genetics | 2011
Maheshi Dassanayake; Dong-Ha Oh; Jeffrey S. Haas; Alvaro G. Hernandez; Hyewon Hong; Shahjahan Ali; Dae-Jin Yun; Ray A. Bressan; Jian-Kang Zhu; Hans J. Bohnert; John M. Cheeseman
Thellungiella parvula is related to Arabidopsis thaliana and is endemic to saline, resource-poor habitats, making it a model for the evolution of plant adaptation to extreme environments. Here we present the draft genome for this extremophile species. Exclusively by next generation sequencing, we obtained the de novo assembled genome in 1,496 gap-free contigs, closely approximating the estimated genome size of 140 Mb. We anchored these contigs to seven pseudo chromosomes without the use of maps. We show that short reads can be assembled to a near-complete chromosome level for a eukaryotic species lacking prior genetic information. The sequence identifies a number of tandem duplications that, by the nature of the duplicated genes, suggest a possible basis for T. parvulas extremophile lifestyle. Our results provide essential background for developing genomically influenced testable hypotheses for the evolution of environmental stress tolerance.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Hua-Jun Wu; Zhonghui Zhang; Wang J; Dong-Ha Oh; Maheshi Dassanayake; Binghang Liu; Quanfei Huang; Hai-Xi Sun; Ran Xia; Yaorong Wu; Yi-Nan Wang; Zhao Yang; Yang Liu; Wan-Ke Zhang; Huawei Zhang; Jinfang Chu; Cunyu Yan; Shuang Fang; Zhang J; Yiqin Wang; Fengxia Zhang; Guodong Wang; Sang Yeol Lee; John M. Cheeseman; Bicheng Yang; Bo Li; Jiumeng Min; Linfeng Yang; Jun Wang; Chengcai Chu
Thellungiella salsuginea, a close relative of Arabidopsis, represents an extremophile model for abiotic stress tolerance studies. We present the draft sequence of the T. salsuginea genome, assembled based on ∼134-fold coverage to seven chromosomes with a coding capacity of at least 28,457 genes. This genome provides resources and evidence about the nature of defense mechanisms constituting the genetic basis underlying plant abiotic stress tolerance. Comparative genomics and experimental analyses identified genes related to cation transport, abscisic acid signaling, and wax production prominent in T. salsuginea as possible contributors to its success in stressful environments.
Plant Physiology | 2009
Dong-Ha Oh; Eduardo O. Leidi; Quan Zhang; Sung-Min Hwang; Youzhi Li; Francisco J. Quintero; Xingyu Jiang; Matilde Paino D'Urzo; Sang Yeol Lee; Yanxiu Zhao; Jeong Dong Bahk; Ray A. Bressan; Dae-Jin Yun; José M. Pardo; Hans J. Bohnert
The contribution of SOS1 (for Salt Overly Sensitive 1), encoding a sodium/proton antiporter, to plant salinity tolerance was analyzed in wild-type and RNA interference (RNAi) lines of the halophytic Arabidopsis (Arabidopsis thaliana)-relative Thellungiella salsuginea. Under all conditions, SOS1 mRNA abundance was higher in Thellungiella than in Arabidopsis. Ectopic expression of the Thellungiella homolog ThSOS1 suppressed the salt-sensitive phenotype of a Saccharomyces cerevisiae strain lacking sodium ion (Na+) efflux transporters and increased salt tolerance of wild-type Arabidopsis. thsos1-RNAi lines of Thellungiella were highly salt sensitive. A representative line, thsos1-4, showed faster Na+ accumulation, more severe water loss in shoots under salt stress, and slower removal of Na+ from the root after removal of stress compared with the wild type. thsos1-4 showed drastically higher sodium-specific fluorescence visualized by CoroNa-Green, a sodium-specific fluorophore, than the wild type, inhibition of endocytosis in root tip cells, and cell death in the adjacent elongation zone. After prolonged stress, Na+ accumulated inside the pericycle in thsos1-4, while sodium was confined in vacuoles of epidermis and cortex cells in the wild type. RNAi-based interference of SOS1 caused cell death in the root elongation zone, accompanied by fragmentation of vacuoles, inhibition of endocytosis, and apoplastic sodium influx into the stele and hence the shoot. Reduction in SOS1 expression changed Thellungiella that normally can grow in seawater-strength sodium chloride solutions into a plant as sensitive to Na+ as Arabidopsis.
Journal of Experimental Botany | 2010
Dong-Ha Oh; Sang Yeol Lee; Ray A. Bressan; Dae-Jin Yun; Hans J. Bohnert
A mutation of AtSOS1 (Salt Overly Sensitive 1), a plasma membrane Na+/H+-antiporter in Arabidopsis thaliana, leads to a salt-sensitive phenotype accompanied by the death of root cells under salt stress. Intracellular events and changes in gene expression were compared during a non-lethal salt stress between the wild type and a representative SOS1 mutant, atsos1-1, by confocal microscopy using ion-specific fluorophores and by quantitative RT-PCR. In addition to the higher accumulation of sodium ions, atsos1-1 showed inhibition of endocytosis, abnormalities in vacuolar shape and function, and changes in intracellular pH compared to the wild type in root tip cells under stress. Quantitative RT-PCR revealed a dramatically faster and higher induction of root-specific Ca2+ transporters, including several CAXs and CNGCs, and the drastic down-regulation of genes involved in pH-homeostasis and membrane potential maintenance. Differential regulation of genes for functions in intracellular protein trafficking in atsos1-1 was also observed. The results suggested roles of the SOS1 protein, in addition to its function as a Na+/H+ antiporter, whose disruption affected membrane traffic and vacuolar functions possibly by controlling pH homeostasis in root cells.
Gene | 2003
Seung-Jae Noh; Chang Seob Kwon; Dong-Ha Oh; Jae Sun Moon; Won-Il Chung
Compared to mammals, little is known about the unfolded protein response (UPR) in plants. Using an oligonucleotide array comprising approximately 8200 Arabidopsis genes we investigated the effect of endoplasmic reticulum (ER) stress on gene expression. Expression of 26 genes increased, including at least nine whose products act in the ER, while their transcriptional activations were confirmed by promoter analyses. Among them, BiP-L, a novel BiP, whose expression appeared to be regulated by two promoter sequences perfectly matching mammalian ERSE. Cloning and sequencing of full-length BiP-L cDNA showed it contained a signal peptide sequence and the ER retention signal (HDEL). Interestingly, BiP-L was substantially different from the other two Arabidopsis BiP genes in genomic organization and sequence homology. Furthermore, phylogenetic analysis showed that the BiP-L protein is the most distal form among the reported plant BiP proteins. RNA levels of BiP-L were very low in various mature Arabidopsis plant organs, while significant levels of BiP-L only observed in stressed seedlings. Transcription of BiP-L during ER stress was shown to be regulated by a feedback loop.
Journal of Experimental Botany | 2010
Francesco Orsini; Matilde Paino D'Urzo; Gunsu Inan; Sara Serra; Dong-Ha Oh; Michael V. Mickelbart; Federica Consiglio; Xia Li; Jae Cheol Jeong; Dae-Jin Yun; Hans J. Bohnert; Ray A. Bressan; Albino Maggio
Salinity is an abiotic stress that limits both yield and the expansion of agricultural crops to new areas. In the last 20 years our basic understanding of the mechanisms underlying plant tolerance and adaptation to saline environments has greatly improved owing to active development of advanced tools in molecular, genomics, and bioinformatics analyses. However, the full potential of investigative power has not been fully exploited, because the use of halophytes as model systems in plant salt tolerance research is largely neglected. The recent introduction of halophytic Arabidopsis-Relative Model Species (ARMS) has begun to compare and relate several unique genetic resources to the well-developed Arabidopsis model. In a search for candidates to begin to understand, through genetic analyses, the biological bases of salt tolerance, 11 wild relatives of Arabidopsis thaliana were compared: Barbarea verna, Capsella bursa-pastoris, Hirschfeldia incana, Lepidium densiflorum, Malcolmia triloba, Lepidium virginicum, Descurainia pinnata, Sisymbrium officinale, Thellungiella parvula, Thellungiella salsuginea (previously T. halophila), and Thlaspi arvense. Among these species, highly salt-tolerant (L. densiflorum and L. virginicum) and moderately salt-tolerant (M. triloba and H. incana) species were identified. Only T. parvula revealed a true halophytic habitus, comparable to the better studied Thellungiella salsuginea. Major differences in growth, water transport properties, and ion accumulation are observed and discussed to describe the distinctive traits and physiological responses that can now be studied genetically in salt stress research.
Plant Physiology | 2010
Dong-Ha Oh; Maheshi Dassanayake; Jeffrey S. Haas; Anna Kropornika; Chris L. Wright; Matilde Paino D'Urzo; Hyewon Hong; Shahjahan Ali; Alvaro G. Hernandez; Georgina M. Lambert; Gunsu Inan; David W. Galbraith; Ray A. Bressan; Dae-Jin Yun; Jian-Kang Zhu; John M. Cheeseman; Hans J. Bohnert
The genome of Thellungiella parvula, a halophytic relative of Arabidopsis (Arabidopsis thaliana), is being assembled using Roche-454 sequencing. Analyses of a 10-Mb scaffold revealed synteny with Arabidopsis, with recombination and inversion and an uneven distribution of repeat sequences. T. parvula genome structure and DNA sequences were compared with orthologous regions from Arabidopsis and publicly available bacterial artificial chromosome sequences from Thellungiella salsuginea (previously Thellungiella halophila). The three-way comparison of sequences, from one abiotic stress-sensitive species and two tolerant species, revealed extensive sequence conservation and microcolinearity, but grouping Thellungiella species separately from Arabidopsis. However, the T. parvula segments are distinguished from their T. salsuginea counterparts by a pronounced paucity of repeat sequences, resulting in a 30% shorter DNA segment with essentially the same gene content in T. parvula. Among the genes is SALT OVERLY SENSITIVE1 (SOS1), a sodium/proton antiporter, which represents an essential component of plant salinity stress tolerance. Although the SOS1 coding region is highly conserved among all three species, the promoter regions show conservation only between the two Thellungiella species. Comparative transcript analyses revealed higher levels of basal as well as salt-induced SOS1 expression in both Thellungiella species as compared with Arabidopsis. The Thellungiella species and other halophytes share conserved pyrimidine-rich 5′ untranslated region proximal regions of SOS1 that are missing in Arabidopsis. Completion of the genome structure of T. parvula is expected to highlight distinctive genetic elements underlying the extremophile lifestyle of this species.
Plant Physiology | 2012
Zahir Ali; Hyeong Cheol Park; Akhtar Ali; Dong-Ha Oh; Rashid Aman; Anna Kropornicka; Hyewon Hong; Wonkyun Choi; Woo Sik Chung; Woe-Yeon Kim; Ray A. Bressan; Hans J. Bohnert; Sang Yeol Lee; Dae-Jin Yun
Cellular Na+/K+ ratio is a crucial parameter determining plant salinity stress resistance. We tested the function of plasma membrane Na+/K+ cotransporters in the High-affinity K+ Transporter (HKT) family from the halophytic Arabidopsis (Arabidopsis thaliana) relative Thellungiella salsuginea. T. salsuginea contains at least two HKT genes. TsHKT1;1 is expressed at very low levels, while the abundant TsHKT1;2 is transcriptionally strongly up-regulated by salt stress. TsHKT-based RNA interference in T. salsuginea resulted in Na+ sensitivity and K+ deficiency. The athkt1 mutant lines overexpressing TsHKT1;2 proved less sensitive to Na+ and showed less K+ deficiency than lines overexpressing AtHKT1. TsHKT1;2 ectopically expressed in yeast mutants lacking Na+ or K+ transporters revealed strong K+ transporter activity and selectivity for K+ over Na+. Altering two amino acid residues in TsHKT1;2 to mimic the AtHKT1 sequence resulted in enhanced sodium uptake and loss of the TsHKT1;2 intrinsic K+ transporter activity. We consider the maintenance of K+ uptake through TsHKT1;2 under salt stress an important component supporting the halophytic lifestyle of T. salsuginea.
Molecular Plant | 2013
Jeong Im Kim; Dongwon Baek; Hyeong Cheol Park; Hyun Jin Chun; Dong-Ha Oh; Min Kyung Lee; Joon-Yung Cha; Woe-Yeon Kim; Min Chul Kim; Woo Sik Chung; Hans J. Bohnert; Sang Yeol Lee; Ray A. Bressan; Shin-Woo Lee; Dae-Jin Yun
Indole-3-acetic acid (IAA), a major plant auxin, is produced in both tryptophan-dependent and tryptophan-independent pathways. A major pathway in Arabidopsis thaliana generates IAA in two reactions from tryptophan. Step one converts tryptophan to indole-3-pyruvic acid (IPA) by tryptophan aminotransferases followed by a rate-limiting step converting IPA to IAA catalyzed by YUCCA proteins. We identified eight putative StYUC (Solanum tuberosum YUCCA) genes whose deduced amino acid sequences share 50%-70% identity with those of Arabidopsis YUCCA proteins. All include canonical, conserved YUCCA sequences: FATGY motif, FMO signature sequence, and FAD-binding and NADP-binding sequences. In addition, five genes were found with ~50% amino acid sequence identity to Arabidopsis tryptophan aminotransferases. Transgenic potato (Solanum tuberosum cv. Jowon) constitutively overexpressing Arabidopsis AtYUC6 displayed high-auxin phenotypes such as narrow downward-curled leaves, increased height, erect stature, and longevity. Transgenic potato plants overexpressing AtYUC6 showed enhanced drought tolerance based on reduced water loss. The phenotype was correlated with reduced levels of reactive oxygen species in leaves. The results suggest a functional YUCCA pathway of auxin biosynthesis in potato that may be exploited to alter plant responses to the environment.
Biochemical and Biophysical Research Communications | 2003
Dong-Ha Oh; Chang-Seob Kwon; Hiroshi Sano; Won-Il Chung; Nozomu Koizumi
Using Arabidopsis thaliana, we identified the cis-element involved in the plant unfolded protein response (UPR). In transgenic plants, tunicamycin stimulated expression of a reporter gene under the control of the BiP promoter and promoter analysis identified a 24 bp sequence crucial to this induction. When fused with a minimal promoter, a hexamer of this sequence was sufficient for induction of a reporter gene in protoplasts treated with tunicamycin or dithiothreitol. Induction rate equivalent to original promoter was observed when the assay was conducted in transgenic plants. This 24 bp sequence contained two elements also responsible for the UPR in animals. Either of these elements was sufficient for the plant UPR, indicating conservation between animals and plants of cis-elements involved in the UPR.