Dong Kuk Lee
Seoul National University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dong Kuk Lee.
Biophysical Journal | 2003
Kevin Hallock; Dong Kuk Lee; Ayyalusamy Ramamoorthy
In this work, we present the first characterization of the cell lysing mechanism of MSI-78, an antimicrobial peptide. MSI-78 is an amphipathic alpha-helical peptide designed by Genaera Corporation as a synthetic analog to peptides from the magainin family. (31)P-NMR of mechanically aligned samples and differential scanning calorimetry (DSC) were used to study peptide-containing lipid bilayers. DSC showed that MSI-78 increased the fluid lamellar to inverted hexagonal phase transition temperature of 1,2-dipalmitoleoyl-phosphatidylethanolamine indicating the peptide induces positive curvature strain in lipid bilayers. (31)P-NMR of lipid bilayers composed of MSI-78 and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine demonstrated that the peptide inhibited the fluid lamellar to inverted hexagonal phase transition of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine, supporting the DSC results, and the peptide did not induce the formation of nonlamellar phases, even at very high peptide concentrations (15 mol %). (31)P-NMR of samples containing 1-palmitoyl-2-oleoyl-phosphatidylcholine and MSI-78 revealed that MSI-78 induces significant changes in the bilayer structure, particularly at high peptide concentrations. At lower concentrations (1-5%), the peptide altered the morphology of the bilayer in a way consistent with the formation of a toroidal pore. Higher concentrations of peptide (10-15%) led to the formation of a mixture of normal hexagonal phase and lamellar phase lipids. This work shows that MSI-78 induces significant changes in lipid bilayers via positive curvature strain and presents a model consistent with both the observed spectral changes and previously published work.
Biophysical Journal | 2002
Kevin Hallock; Dong Kuk Lee; John R. Omnaas; Henry I. Mosberg; Ayyalusamy Ramamoorthy
Pardaxin is a membrane-lysing peptide originally isolated from the fish Pardachirus marmoratus. The effect of the carboxy-amide of pardaxin (P1a) on bilayers of varying composition was studied using (15)N and (31)P solid-state NMR of mechanically aligned samples and differential scanning calorimetry (DSC). (15)N NMR spectroscopy of [(15)N-Leu(19)]P1a found that the orientation of the peptides C-terminal helix depends on membrane composition. It is located on the surface of lipid bilayers composed of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and is inserted in lipid bilayers composed of 1,2-dimyristoyl-phosphatidylcholine (DMPC). The former suggests a carpet mechanism for bilayer disruption whereas the latter is consistent with a barrel-stave mechanism. The (31)P chemical shift NMR spectra showed that the peptide significantly disrupts lipid bilayers composed solely of zwitterionic lipids, particularly bilayers composed of POPC, in agreement with a carpet mechanism. P1a caused the formation of an isotropic phase in 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) lipid bilayers. This, combined with DSC data that found P1a reduced the fluid lamellar-to-inverted hexagonal phase transition temperature at very low concentrations (1:50,000), is interpreted as the formation of a cubic phase and not micellization of the membrane. Experiments exploring the effect of P1a on lipid bilayers composed of 4:1 POPC:cholesterol, 4:1 POPE:cholesterol, 3:1 POPC:1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), and 3:1 POPE:POPG were also conducted, and the presence of anionic lipids or cholesterol was found to reduce the peptides ability to disrupt bilayers. Considered together, these data demonstrate that the mechanism of P1a is dependent on membrane composition.
Journal of the American Chemical Society | 2009
Jeffrey Barry; Michelle Fritz; Jeffrey R. Brender; Pieter E. S. Smith; Dong Kuk Lee; Ayyalusamy Ramamoorthy
Curcumin is the active ingredient of turmeric powder, a natural spice used for generations in traditional medicines. Curcumins broad spectrum of antioxidant, anticarcinogenic, antimutagenic, and anti-inflammatory properties makes it particularly interesting for the development of pharmaceutical compounds. Because of curcumins various effects on the function of numerous unrelated membrane proteins, it has been suggested that it affects the properties of the bilayer itself. However, a detailed atomic-level study of the interaction of curcumin with membranes has not been attempted. A combination of solid-state NMR and differential scanning calorimetry experiments shows curcumin has a strong effect on membrane structure at low concentrations. Curcumin inserts deep into the membrane in a transbilayer orientation, anchored by hydrogen bonding to the phosphate group of lipids in a manner analogous to cholesterol. Like cholesterol, curcumin induces segmental ordering in the membrane. Analysis of the concentration dependence of the order parameter profile derived from NMR results suggests curcumin forms higher order oligomeric structures in the membrane that span and likely thin the bilayer. Curcumin promotes the formation of the highly curved inverted hexagonal phase, which may influence exocytotic and membrane fusion processes within the cell. The experiments outlined here show promise for understanding the action of other drugs such as capsaicin in which drug-induced alterations of membrane structure have strong pharmacological effects.
Annual reports on NMR spectroscopy | 2004
Ayyalusamy Ramamoorthy; Yufeng Wei; Dong Kuk Lee
Abstract Gone are the days when solid-state NMR spectroscopy was considered to be untouchable-like as it provided unappealing spectral lines due to poor resolution and sensitivity. Introduction of a number of powerful concepts dramatically increased the resolution and sensitivity of the spectroscopy and paved numerous avenues for researchers from all walks of science. Now, the new era is harvesting the valuable technique’s applications on chemical, material, biological, and pharmaceutical systems in all types of non-isotropic phases such as single crystal, liquid crystal, fibre, powder, and amorphous. One of the most powerful solid-state NMR techniques is PISEMA, which provides very high resolution of the correlation and the precise measurement of chemical shift and heteronuclear dipolar coupling interactions. It is a combination of polarization inversion, that doubles the sensitivity, and spin exchange at the magic angle (SEMA) among dipolar coupled heteronuclear spins. The SEMA pulse sequence suppresses dipole–dipole interaction among protons and simultaneously generates a doubly rotating frame to have no role for chemical shifts of 1H and S nuclei (such as 13C and 15N). The PISEMA pulse sequence has a high dipolar scaling factor, and the dipolar resolution in the PISEMA spectrum is up to 10 times higher than in spectra obtained by the conventional separated-local-field method. A 2D PISEMA spectrum can be viewed as an image that could be used to determine the secondary structure and topology of aligned molecules. In fact, this was the first solid-state NMR technique that rendered complete resolution and partial assignment of resonances, and the structure and the topology of uniformly labeled membrane proteins. Fascinated by the efficiency of PISEMA, a family of multidimensional pulse sequences has been designed to further increase the resolution and applied to study the structure of biological solids, particularly membrane-associated peptides and proteins which are increasingly important, but notorious in general to investigate. In this review, the pulse sequence, line-narrowing mechanism, experimental set-up, applications and limits of 2D PISEMA and related techniques, and different types of PISEMA spectra are discussed. Multi-dimensional solid-state NMR experiments designed based on 2D PISEMA and their applications are reviewed. A new one-dimensional 1H-detected PISEMA pulse sequence to enhance the sensitivity of the experiment is also presented.
Biophysical Journal | 2012
Michele F.M. Sciacca; Samuel A. Kotler; Jeffrey R. Brender; Jennifer Y. Chen; Dong Kuk Lee; Ayyalusamy Ramamoorthy
Disruption of cell membranes by Aβ is believed to be one of the key components of Aβ toxicity. However, the mechanism by which this occurs is not fully understood. Here, we demonstrate that membrane disruption by Aβ occurs by a two-step process, with the initial formation of ion-selective pores followed by nonspecific fragmentation of the lipid membrane during amyloid fiber formation. Immediately after the addition of freshly dissolved Aβ(1-40), defects form on the membrane that share many of the properties of Aβ channels originally reported from single-channel electrical recording, such as cation selectivity and the ability to be blockaded by zinc. By contrast, subsequent amyloid fiber formation on the surface of the membrane fragments the membrane in a way that is not cation selective and cannot be stopped by zinc ions. Moreover, we observed that the presence of ganglioside enhances both the initial pore formation and the fiber-dependent membrane fragmentation process. Whereas pore formation by freshly dissolved Aβ(1-40) is weakly observed in the absence of gangliosides, fiber-dependent membrane fragmentation can only be observed in their presence. These results provide insights into the toxicity of Aβ and may aid in the design of specific compounds to alleviate the neurodegeneration of Alzheimers disease.
Journal of Physical Chemistry B | 2011
Edmund F. Palermo; Dong Kuk Lee; Ayyalusamy Ramamoorthy; Kenichi Kuroda
Cationic, amphiphilic polymers are currently being used as antimicrobial agents that disrupt biomembranes, although their mechanisms remain poorly understood. Herein, membrane association and disruption by amphiphilic polymers bearing primary, tertiary, or quaternary ammonium salt groups reveal the role of cationic group structure in the polymer-membrane interaction. The dissociation constants of polymers to liposomes of POPC were obtained by a fluorometric assay, exploiting the environmental sensitivity of dansyl moieties in the polymer end groups. Dye leakage from liposomes and solid-state NMR provided further insights into the polymer-induced membrane disruption. Interestingly, the polymers with primary amine groups induced reorganization of the bilayer structure to align lipid headgroups perpendicular to the membrane. The results showed that polymers bearing primary amines exceed the tertiary and quaternary ammonium counterparts in membrane binding and disrupting abilities. This is likely due to enhanced complexation of primary amines to the phosphate groups in the lipids, through a combination of hydrogen bonding and electrostatic interactions.
Biophysical Journal | 2002
Kevin Hallock; Katherine A. Henzler Wildman; Dong Kuk Lee; Ayyalusamy Ramamoorthy
Uniaxially aligned phospholipid bilayers are often used as model membranes to obtain structural details of membrane-associated molecules, such as peptides, proteins, drugs, and cholesterol. Well-aligned bilayer samples can be difficult to prepare and no universal procedure has been reported that orients all combinations of membrane-embedded components. In this study, a new method for producing mechanically aligned phospholipid bilayer samples using naphthalene, a sublimable solid, was developed. Using (31)P-NMR spectroscopy, comparison of a conventional method of preparing mechanically aligned samples with the new naphthalene procedure found that the use of naphthalene significantly enhanced the alignment of 3:1 1-palmitoyl-2-oleoyl-phosphatidylethanolamine to 1-palmitoyl-2-oleoyl-phosphatidylglycerol. The utility of the naphthalene procedure is also demonstrated on bilayers of many different compositions, including bilayers containing peptides such as pardaxin and gramicidin. These results show that the naphthalene procedure is a generally applicable method for producing mechanically aligned samples for use in NMR spectroscopy. The increase in bilayer alignment implies that this procedure will improve the sensitivity of solid-state NMR experiments, in particular those techniques that detect low-sensitivity nuclei, such as 15N and 13C.
Biochimica et Biophysica Acta | 2010
Ayyalusamy Ramamoorthy; Dong Kuk Lee; Tennaru Narasimhaswamy; Ravi Prakash Reddy Nanga
While high-resolution 3D structures reveal the locations of all atoms in a molecule, it is the dynamics that correlates the structure with the function of a biological molecule. The complete characterization of dynamics of a membrane protein is in general complex. In this study, we report the influence of dynamics on the channel-forming function of pardaxin using chemical shifts and dipolar couplings measured from 2D broadband-PISEMA experiments on mechanically aligned phospholipids bilayers. Pardaxin is a 33-residue antimicrobial peptide originally isolated from the Red Sea Moses sole, Pardachirus marmoratus, which functions via either a carpet-type or barrel-stave mechanism depending on the membrane composition. Our results reveal that the presence of cholesterol significantly reduces the backbone motion and the tilt angle of the C-terminal amphipathic helix of pardaxin. In addition, a correlation between the dynamics-induced heterogeneity in the tilt of the C-terminal helix and the membrane disrupting activity of pardaxin by the barrel-stave mechanism is established. This correlation is in excellent agreement with the absence of hemolytic activity for the derivatives of pardaxin. These results explain the role of cholesterol in the selectivity of the broad-spectrum of antimicrobial activities of pardaxin.
Biochemistry | 2012
Michele F.M. Sciacca; Jeffrey R. Brender; Dong Kuk Lee; Ayyalusamy Ramamoorthy
The toxicity of amyloid-forming peptides has been hypothesized to reside in the ability of protein oligomers to interact with and disrupt the cell membrane. Much of the evidence for this hypothesis comes from in vitro experiments using model membranes. However, the accuracy of this approach depends on the ability of the model membrane to accurately mimic the cell membrane. The effect of membrane composition has been overlooked in many studies of amyloid toxicity in model systems. By combining measurements of membrane binding, membrane permeabilization, and fiber formation, we show that lipids with the phosphatidylethanolamine (PE) headgroup strongly modulate the membrane disruption induced by IAPP (islet amyloid polypeptide protein), an amyloidogenic protein involved in type II diabetes. Our results suggest that PE lipids hamper the interaction of prefibrillar IAPP with membranes but enhance the membrane disruption correlated with the growth of fibers on the membrane surface via a detergent-like mechanism. These findings provide insights into the mechanism of membrane disruption induced by IAPP, suggesting a possible role of PE and other amyloids involved in other pathologies.
Biochemistry | 2010
Sathiah Thennarasu; Rui Huang; Dong Kuk Lee; Pei Yang; Lee Maloy; Zhan Chen; Ayyalusamy Ramamoorthy
In a minimalist design approach, a synthetic peptide MSI-367 [(KFAKKFA)(3)-NH(2)] was designed and synthesized with the objective of generating cell-selective nonlytic peptides, which have a significant bearing on cell targeting. The peptide exhibited potent activity against both bacteria and fungi, but no toxicity to human cells at micromolar concentrations. Bacterial versus human cell membrane selectivity of the peptide was determined via membrane permeabilization assays. Circular dichroism investigations revealed the intrinsic helix propensity of the peptide, β-turn structure in aqueous buffer and extended and turn conformations upon binding to lipid vesicles. Differential scanning calorimetry experiments with 1,2-dipalmitoleoyl-sn-glycero-3-phosphatidylethanolamine bilayers indicated the induction of positive curvature strain and repression of the fluid lamellar to inverted hexagonal phase transition by MSI-367. Results of isothermal titration calorimetry (ITC) experiments suggested the possibility of formation of specific lipid-peptide complexes leading to aggregation. (2)H nuclear magnetic resonance (NMR) of deuterated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) multilamellar vesicles confirmed the limited effect of the membrane-embedded peptide at the lipid-water interface. (31)P NMR data indicated changes in the lipid headgroup orientation of POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine lipid bilayers upon peptide binding. Membrane-embedded and membrane-inserted states of the peptide were observed via sum frequency generation vibrational spectroscopy. Circular dichroism, ITC, and (31)P NMR data for Escherichia coli lipids agree with the hypothesis that strong electrostatic lipid-peptide interactions embrace the peptide at the lipid-water interface and provide the basis for bacterial cell selectivity.