Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ayyalusamy Ramamoorthy is active.

Publication


Featured researches published by Ayyalusamy Ramamoorthy.


Biophysical Journal | 2003

MSI-78, an Analogue of the Magainin Antimicrobial Peptides, Disrupts Lipid Bilayer Structure via Positive Curvature Strain

Kevin Hallock; Dong Kuk Lee; Ayyalusamy Ramamoorthy

In this work, we present the first characterization of the cell lysing mechanism of MSI-78, an antimicrobial peptide. MSI-78 is an amphipathic alpha-helical peptide designed by Genaera Corporation as a synthetic analog to peptides from the magainin family. (31)P-NMR of mechanically aligned samples and differential scanning calorimetry (DSC) were used to study peptide-containing lipid bilayers. DSC showed that MSI-78 increased the fluid lamellar to inverted hexagonal phase transition temperature of 1,2-dipalmitoleoyl-phosphatidylethanolamine indicating the peptide induces positive curvature strain in lipid bilayers. (31)P-NMR of lipid bilayers composed of MSI-78 and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine demonstrated that the peptide inhibited the fluid lamellar to inverted hexagonal phase transition of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine, supporting the DSC results, and the peptide did not induce the formation of nonlamellar phases, even at very high peptide concentrations (15 mol %). (31)P-NMR of samples containing 1-palmitoyl-2-oleoyl-phosphatidylcholine and MSI-78 revealed that MSI-78 induces significant changes in the bilayer structure, particularly at high peptide concentrations. At lower concentrations (1-5%), the peptide altered the morphology of the bilayer in a way consistent with the formation of a toroidal pore. Higher concentrations of peptide (10-15%) led to the formation of a mixture of normal hexagonal phase and lamellar phase lipids. This work shows that MSI-78 induces significant changes in lipid bilayers via positive curvature strain and presents a model consistent with both the observed spectral changes and previously published work.


Accounts of Chemical Research | 2012

Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective.

Jeffrey R. Brender; Samer Salamekh; Ayyalusamy Ramamoorthy

The aggregation of proteins is tightly controlled in living systems, and misfolded proteins are normally removed before aggregation of the misfolded protein can occur. But for reasons not clearly understood, in some individuals this degradation process breaks down, and misfolded proteins accumulate in insoluble protein aggregates (amyloid deposits) over time. Of the many proteins expressed in humans, a small but growing number have been found to form the long, highly ordered β-sheet protein fibers that comprise amyloid deposits. Despite a lack of obvious sequence similarity, the amyloid forms of diverse proteins are strikingly similar, consisting of long, highly ordered insoluble fibers with a characteristic crossed β-sheet pattern. Amyloidogenesis has been the focus of intense basic and clinical research, because a high proportion of amyloidogenic proteins have been linked to common degenerative diseases, including Alzheimers disease, type II diabetes, and Parkinsons disease. The apparent link between amyloidogenic proteins and disease was initially attributed to the amyloid form of the protein; however, increasing evidence suggests that the toxicity is due to intermediates generated during the assembly of amyloid fibers. These intermediates have been proposed to attack cells in a variety of ways, such as by generating inflammation, creating reactive oxygen species, and overloading the misfolded protein response pathway. One common, well-studied mechanism is the disruption of the plasma and organelle membranes. In this Account, we examine the early molecular-level events in the aggregation of the islet amyloid polypeptide (IAPP, also called amylin) and its ensuing disruption of membranes. IAPP is a 37-residue peptide secreted in conjunction with insulin; it is highly amyloidogenic and often found in amyloid deposits in type II diabetics. IAPP aggregates are highly toxic to the β-cells that produce insulin, and thus IAPP is believed to be one of the factors involved in the transition from early to later stages of type II diabetes. Using variants of IAPP that are combinations of toxic or non-toxic and amyloidogenic or nonamyloidogenic forms, we have shown that formation of amyloid fibers is a sufficient but not necessary condition for the disruption of β-cells. Instead, the ability to induce membrane disruption in model membranes appears to be related to the peptides ability to stabilize curvature in the membrane, which in turn is related to the depth of penetration in the membrane. Although many similarities exist between IAPP and other amyloidogenic proteins, one important difference appears to be the role of small oligomers in the assembly process of amyloid fibers. In many amyloidogenic proteins, small oligomers form a distinct metastable intermediate that is frequently the most toxic species; however, in IAPP, small oligomers appear to be transient and are rapidly converted to amyloid fibers. Moreover, the aggregation and toxicity of IAPP is controlled by other cofactors present in the secretory granule from which it is released, such as zinc and insulin, in a control mechanism that is somehow unbalanced in type II diabetics. Investigations into this process are likely to give clues to the mysterious origins of type II diabetes at the molecular level.


Biochemical and Biophysical Research Communications | 2011

A partially folded structure of amyloid-beta(1-40) in an aqueous environment

Subramanian Vivekanandan; Jeffrey R. Brender; Shirley Y. Lee; Ayyalusamy Ramamoorthy

Aggregation of the Aβ(1-40) peptide is linked to the development of extracellular plaques characteristic of Alzheimers disease. While previous studies commonly show the Aβ(1-40) is largely unstructured in solution, we show that Aβ(1-40) can adopt a compact, partially folded structure. In this structure (PDB ID: 2LFM), the central hydrophobic region of the peptide forms a 3(10) helix from H13 to D23 and the N- and C-termini collapse against the helix due to the clustering of hydrophobic residues. Helical intermediates have been predicted to be crucial on-pathway intermediates in amyloid fibrillogenesis, and the structure presented here presents a new target for investigation of early events in Aβ(1-40) fibrillogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Design of small molecules that target metal-Aβ species and regulate metal-induced Aβ aggregation and neurotoxicity

Jung Suk Choi; Joseph J. Braymer; Ravi Prakash Reddy Nanga; Ayyalusamy Ramamoorthy; Mi Hee Lim

The accumulation of metal ions and amyloid-β (Aβ) aggregates found in the brain of patients with Alzheimer’s disease (AD) has been suggested to be involved in AD pathogenesis. To investigate metal-Aβ-associated pathways in AD, development of chemical tools to target metal-Aβ species is desired. Only a few efforts, however, have been reported. Here, we report bifunctional small molecules, N-(pyridin-2-ylmethyl)aniline (L2-a) and N1,N1-dimethyl-N4-(pyridin-2-ylmethyl)benzene-1,4-diamine (L2-b) that can interact with both metal ions and Aβ species, as determined by spectroscopic methods including high-resolution NMR spectroscopy. Using the bifunctional compound L2-b, metal-induced Aβ aggregation and neurotoxicity were modulated in vitro as well as in human neuroblastoma cells. Furthermore, treatment of human AD brain tissue homogenates containing metal ions and Aβ species with L2-b showed disassembly of Aβ aggregates. Therefore, our studies presented herein demonstrate the value of bifunctional compounds as chemical tools for investigating metal-Aβ-associated events and their mechanisms in the development and pathogenesis of AD and as potential therapeutics.


Biophysical Journal | 2002

Membrane Composition Determines Pardaxin's Mechanism of Lipid Bilayer Disruption

Kevin Hallock; Dong Kuk Lee; John R. Omnaas; Henry I. Mosberg; Ayyalusamy Ramamoorthy

Pardaxin is a membrane-lysing peptide originally isolated from the fish Pardachirus marmoratus. The effect of the carboxy-amide of pardaxin (P1a) on bilayers of varying composition was studied using (15)N and (31)P solid-state NMR of mechanically aligned samples and differential scanning calorimetry (DSC). (15)N NMR spectroscopy of [(15)N-Leu(19)]P1a found that the orientation of the peptides C-terminal helix depends on membrane composition. It is located on the surface of lipid bilayers composed of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and is inserted in lipid bilayers composed of 1,2-dimyristoyl-phosphatidylcholine (DMPC). The former suggests a carpet mechanism for bilayer disruption whereas the latter is consistent with a barrel-stave mechanism. The (31)P chemical shift NMR spectra showed that the peptide significantly disrupts lipid bilayers composed solely of zwitterionic lipids, particularly bilayers composed of POPC, in agreement with a carpet mechanism. P1a caused the formation of an isotropic phase in 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) lipid bilayers. This, combined with DSC data that found P1a reduced the fluid lamellar-to-inverted hexagonal phase transition temperature at very low concentrations (1:50,000), is interpreted as the formation of a cubic phase and not micellization of the membrane. Experiments exploring the effect of P1a on lipid bilayers composed of 4:1 POPC:cholesterol, 4:1 POPE:cholesterol, 3:1 POPC:1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), and 3:1 POPE:POPG were also conducted, and the presence of anionic lipids or cholesterol was found to reduce the peptides ability to disrupt bilayers. Considered together, these data demonstrate that the mechanism of P1a is dependent on membrane composition.


Biochimica et Biophysica Acta | 2009

Structure, Membrane Orientation, Mechanism, and Function of Pexiganan – A Highly Potent Antimicrobial Peptide Designed From Magainin

Lindsey M. Gottler; Ayyalusamy Ramamoorthy

The growing problem of bacterial resistance to conventional antibiotic compounds and the need for new antibiotics have stimulated interest in the development of antimicrobial peptides (AMPs) as human therapeutics. Development of topically applied agents, such as pexiganan (also known as MSI-78, an analog of the naturally occurring magainin2, extracted from the skin of the African frog Xenopus laevis) has been the focus of pharmaceutical development largely because of the relative safety of topical therapy and the uncertainty surrounding the long-term toxicology of any new class of drug administered systemically. The main hurdle that has hindered the development of antimicrobial peptides is that many of the naturally occurring peptides (such as magainin), although active in vitro, are effective in animal models of infection only at very high doses, often close to the toxic doses of the peptide, reflecting an unacceptable margin of safety. Though MSI-78 did not pass the FDA approval, it is still the best-studied AMP to date for therapeutic purposes. Biophysical studies have shown that this peptide is unstructured in solution, forms an antiparallel dimer of amphipathic helices upon binding to the membrane, and disrupts membrane via toroidal-type pore formation. This article covers functional, biophysical, biochemical and structural studies on pexiganan.


Chemical Reviews | 2012

The Magic of Bicelles Lights Up Membrane Protein Structure

Ulrich H.N. Dürr; Melissa Gildenberg; Ayyalusamy Ramamoorthy

1.1. Why Study Membranes and Membrane Proteins? Biological membranes and membrane proteins, responsible for numerous exciting biological processes, present one of the paramount challenges in biophysics today. Membranes are present in great number and variety in all organisms. They form the boundary between the inside and outside for any bacterium or cell, and they delimit the host of organelles that make up their inner subunits. Each biological membrane is made up of dozens of different types of lipids and sterols, and any particular type of membrane has a characteristic content of these different constituents. As a very basic example, we mention that prokaryotic membranes contain a notable component of negatively charged lipids but almost no cholesterol, while eukaryotic membranes are mostly zwitterionic but have a significant amount of cholesterol. Since the driving biophysical principles of membrane formation are very simple—they lie in the amphipathic properties of any lipid molecule—a single lipid type is sufficient to form membrane-like bilayers in an aqueous environment. Such model membranes are used extensively to study biophysical properties that are representative for most membrane systems. A particularly interesting effect is observed when detergent molecules are added to lipid bilayer samples: the detergents solubilize the bilayers, and in certain regimes so-called bilayered mixed micelles or “bicelles” are formed. In the simplest case, they can be described as microscopic disks where a bilayer patch is encircled by a “rim” of detergent molecules. Bicelles represent a new instance of lipid morphology and are extensively applicable to structural studies of lipid membranes and protein structure.1 Membranes delimit any cell and all of its compartments. They form natural borders for metabolic substances and signaling molecules. Membrane proteins are the porters and gatekeepers that make sure that only proper molecules or signals make it across the membrane. Since membrane proteins perform numerous key functions in cell metabolism and signaling, they contribute over 30% of the genes in typical eukaryotic genomes,2 and they form the targets for over 50% of drugs in use today.3 The number of elucidated structures of membrane proteins has grown exponentially after the first structure was published in 1985, thus equaling the rate at which structure determination of soluble proteins emerged early on.4 Still, the number of available high-resolution structures of membrane proteins is limited. There are Internet sites that keep track of newly published structures of membrane proteins. The crystallography-oriented Web site of Dr. Stephen White [http://blanco.biomol.uci.edu/mpstruc] has recently been joined by another site maintained by Dr. Dror Warschawski that is dedicated to structures of membrane proteins elucidated by nuclear magnetic resonance (NMR) spectroscopy [www.drorlist.com/nmr/MPNMR.html]. Another equally important site of Dr. Hartmut Michel [www.mpibp-frankfurt.mpg.de/michel/public/memprotstruct.html] with an emphasis on crystallization conditions is no longer updated, but states that access is still enabled. In this review article, we aim to give a general overview of lipid bicelles as employed in the study of protein structure. Recent advances in the field of protein structural biology that have been made possible by exploiting the unique properties of lipid bicelles, in both solution and solid-state NMR spectroscopy, will be discussed. During the last five years, review contributions have presented bicelles either within the far more general context of reconstitution media for solution NMR studies (see section 1.4) or have focused on macroscopically aligned bicelles as used for solid-state NMR studies.5,6 One very recent contribution has tackled the formidable task of reviewing all membrane mimetics employed in both solution and solid-state NMR studies.7 As mentioned above, we will limit the contents of this review article to applications of lipid bicelles, but will cover both the isotropic and the aligned bicelles as used in NMR studies. Some parts of this article can be viewed as an update on the review articles of Opella and Marassi,8 Marcotte and Auger,9 and Prosser et al.10 In addition, some of our own recent research involving bicelles is presented in detail.


Journal of the American Chemical Society | 2009

Determining the Effects of Lipophilic Drugs on Membrane Structure by Solid-State NMR Spectroscopy: The Case of the Antioxidant Curcumin

Jeffrey Barry; Michelle Fritz; Jeffrey R. Brender; Pieter E. S. Smith; Dong Kuk Lee; Ayyalusamy Ramamoorthy

Curcumin is the active ingredient of turmeric powder, a natural spice used for generations in traditional medicines. Curcumins broad spectrum of antioxidant, anticarcinogenic, antimutagenic, and anti-inflammatory properties makes it particularly interesting for the development of pharmaceutical compounds. Because of curcumins various effects on the function of numerous unrelated membrane proteins, it has been suggested that it affects the properties of the bilayer itself. However, a detailed atomic-level study of the interaction of curcumin with membranes has not been attempted. A combination of solid-state NMR and differential scanning calorimetry experiments shows curcumin has a strong effect on membrane structure at low concentrations. Curcumin inserts deep into the membrane in a transbilayer orientation, anchored by hydrogen bonding to the phosphate group of lipids in a manner analogous to cholesterol. Like cholesterol, curcumin induces segmental ordering in the membrane. Analysis of the concentration dependence of the order parameter profile derived from NMR results suggests curcumin forms higher order oligomeric structures in the membrane that span and likely thin the bilayer. Curcumin promotes the formation of the highly curved inverted hexagonal phase, which may influence exocytotic and membrane fusion processes within the cell. The experiments outlined here show promise for understanding the action of other drugs such as capsaicin in which drug-induced alterations of membrane structure have strong pharmacological effects.


Annual reports on NMR spectroscopy | 2004

PISEMA Solid-State NMR Spectroscopy

Ayyalusamy Ramamoorthy; Yufeng Wei; Dong Kuk Lee

Abstract Gone are the days when solid-state NMR spectroscopy was considered to be untouchable-like as it provided unappealing spectral lines due to poor resolution and sensitivity. Introduction of a number of powerful concepts dramatically increased the resolution and sensitivity of the spectroscopy and paved numerous avenues for researchers from all walks of science. Now, the new era is harvesting the valuable technique’s applications on chemical, material, biological, and pharmaceutical systems in all types of non-isotropic phases such as single crystal, liquid crystal, fibre, powder, and amorphous. One of the most powerful solid-state NMR techniques is PISEMA, which provides very high resolution of the correlation and the precise measurement of chemical shift and heteronuclear dipolar coupling interactions. It is a combination of polarization inversion, that doubles the sensitivity, and spin exchange at the magic angle (SEMA) among dipolar coupled heteronuclear spins. The SEMA pulse sequence suppresses dipole–dipole interaction among protons and simultaneously generates a doubly rotating frame to have no role for chemical shifts of 1H and S nuclei (such as 13C and 15N). The PISEMA pulse sequence has a high dipolar scaling factor, and the dipolar resolution in the PISEMA spectrum is up to 10 times higher than in spectra obtained by the conventional separated-local-field method. A 2D PISEMA spectrum can be viewed as an image that could be used to determine the secondary structure and topology of aligned molecules. In fact, this was the first solid-state NMR technique that rendered complete resolution and partial assignment of resonances, and the structure and the topology of uniformly labeled membrane proteins. Fascinated by the efficiency of PISEMA, a family of multidimensional pulse sequences has been designed to further increase the resolution and applied to study the structure of biological solids, particularly membrane-associated peptides and proteins which are increasingly important, but notorious in general to investigate. In this review, the pulse sequence, line-narrowing mechanism, experimental set-up, applications and limits of 2D PISEMA and related techniques, and different types of PISEMA spectra are discussed. Multi-dimensional solid-state NMR experiments designed based on 2D PISEMA and their applications are reviewed. A new one-dimensional 1H-detected PISEMA pulse sequence to enhance the sensitivity of the experiment is also presented.


Journal of the American Chemical Society | 2008

Amyloid Fiber Formation and Membrane Disruption are Separate Processes Localized in Two Distinct Regions of IAPP, the Type-2-Diabetes-Related Peptide

Jeffrey R. Brender; Edgar L. Lee; Marchello A. Cavitt; Ari Gafni; Duncan G. Steel; Ayyalusamy Ramamoorthy

Aggregation of Islet Amyloid Polypeptide (IAPP) has been implicated in the development of type II diabetes. Because IAPP is a highly amyloidogenic peptide, it has been suggested that the formation of IAPP amyloid fibers causes disruption of the cellular membrane and is responsible for the death of beta-cells during type II diabetes. Previous studies have shown that the N-terminal 1-19 region, rather than the amyloidogenic 20-29 region, is primarily responsible for the interaction of the IAPP peptide with membranes. Liposome leakage experiments presented in this study confirm that the pathological membrane disrupting activity of the full-length hIAPP is also shared by hIAPP 1-19. The hIAPP 1-19 fragment at a low concentration of peptide induces membrane disruption to a near identical extent as the full-length peptide. At higher peptide concentrations, the hIAPP 1-19 fragment induces a greater extent of membrane disruption than the full-length peptide. Similar to the full-length peptide, hIAPP 1-19 exhibits a random coil conformation in solution and adopts an alpha-helical conformation upon binding to lipid membranes. However, unlike the full-length peptide, the hIAPP 1-19 fragment did not form amyloid fibers when incubated with POPG vesicles. These results indicate that membrane disruption can occur independently from amyloid formation in IAPP, and the sequences responsible for amyloid formation and membrane disruption are located in different regions of the peptide.

Collaboration


Dive into the Ayyalusamy Ramamoorthy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Kuk Lee

Seoul National University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mi Hee Lim

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge