Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dong Ren is active.

Publication


Featured researches published by Dong Ren.


Oncology Reports | 2012

miR-143 and miR-145 inhibit stem cell characteristics of PC-3 prostate cancer cells

Shuai Huang; Wei Guo; Yubo Tang; Dong Ren; Xuenong Zou; Xinsheng Peng

Emerging evidence demonstrates that cancer stem cells (CSCs) are the critical drivers of tumor progression and metastasis. The microRNAs (miRNAs) may play a crucial role in repressing/promoting metastasis of cancer by regulating CSCs. A previous study showed that miR-143 and miR-145 play an important role in regulating bone metastasis of prostate cancer (PCa), but the exact mechanism of regulation of bone metastasis of PCa is not fully understood. In this study, we found that overexpression of miR-143 and miR-145 inhibited the cell viability and colony formation of PC-3 cells from PCa bone metastasis. Furthermore, miR-143 and miR-145 suppressed tumor sphere formation and expression of CSC markers and stemness factors including CD133, CD44, Oct4, c-Myc and Klf4 in PC-3 cells. The study further found that miR-143 and miR-145 inhibit bone invasion and tumorigenicity of PC-3 cells in vivo. Collectively, these findings demonstrate that miR-143 and miR-145 inhibit CSC properties of PC-3 cells and suggest that miR-143 and miR-145 may play a significant role in the bone metastasis progression of PCa by regulating CSC characteristics.


Journal of Cellular Biochemistry | 2013

HEF1 promotes epithelial mesenchymal transition and bone invasion in prostate cancer under the regulation of microRNA‐145

Wei Guo; Dong Ren; Xiuting Chen; Xiang'an Tu; Shuai Huang; Min Wang; Libing Song; Xuenong Zou; Xinsheng Peng

The principal problem arising from prostate cancer (PCa) is its propensity to metastasize to bones, and its crucial to understand the mechanism of tumor progression to metastasis in order to develop therapies that may reduce the morbidity and mortality of PCa patients. Although we had identified that microRNA(miR)‐145 could repress bone metastasis of PCa via regulating epithelial–mesenchymal transition (EMT) in previous study, it is still unknown how miR‐145 regulated EMT. In the present study, we constructed a luciferase reporter system and identified HEF1 as a direct target of miR‐145. More importantly, HEF1 was shown to promote migration, invasion and EMT of PC‐3 cells, a human PCa cell line originated from a bone metastatic PCa specimen. And HEF1 was also shown to partially mediate miR‐145 suppression of EMT and invasion. Furthermore, inhibition of HEF1 repressed bone invasion of PC‐3 cells in vivo. Expression of HEF1 was negatively correlated with miR‐145 in primary PCa and bone metastatic specimens, but HEF1 was higher in samples which were more likely to commit to bone metastasis or those with higher free prostate‐specific antigen (fPSA) levels and Gleason scores. Taken together, these findings indicate that HEF1 promotes EMT and bone invasion in prostate cancer by directly targeted by miR‐145, and miR‐145 suppresses EMT and invasion, at least in part, through repressing HEF1. J. Cell. Biochem. 114: 1606–1615, 2013.


Cell and Tissue Research | 2014

Double-negative feedback loop between ZEB2 and miR-145 regulates epithelial-mesenchymal transition and stem cell properties in prostate cancer cells

Dong Ren; Min Wang; Wei Guo; Shuai Huang; Zeyu Wang; Xiaohui Zhao; Hong Du; Libing Song; Xinsheng Peng

The invasion and metastasis of tumors are triggered by an epithelial to mesenchymal transition (EMT), which is regulated by microRNAs (miRNAs). EMT also promotes malignant tumor progression and the maintenance of the stem cell property, which endows cancer cells with the capabilities of self-renewal and immortalized proliferation. The transcriptional repressor zinc-finger E-box binding homeobox 2 (ZEB2), as an EMT activator, might be an important promoter of metastasis in some tumors. Here, we report that ZEB2 directly represses the transcription of miR-145, which is a strong repressor of EMT. In turn, ZEB2 is also a direct target of miR-145. Further, our findings show that the downregulation of ZEB2 not only represses invasion, migration, EMT, and the stemness of prostate cancer (PCa) cells, but also suppresses the capability of PC-3 cells to invade bone in vivo. Importantly, the expression level of ZEB2 as revealed by immunohistochemical analysis is positively correlated to bone metastasis, the serum free PSA level, the total PSA level, and the Gleason score in PCa patients and is negatively correlated with miR-145 expression in primary PCa specimens. Thus, our findings demonstrate a double-negative feedback loop between ZEB2 and miR-145 and indicate that the ZEB2/miR-145 double-negative feedback loop plays a significant role in the control of EMT and stem cell properties during the bone metastasis of PCa cells. These results suggest that the double-negative feedback loop between ZEB2 and miR-145 contributes to PCa progression and metastasis and might have therapeutic relevance for the bone metastasis of PCa.


International Journal of Oncology | 2013

Wild-type p53 suppresses the epithelial-mesenchymal transition and stemness in PC-3 prostate cancer cells by modulating miR‑145

Dong Ren; Min Wang; Wei Guo; Xiaohui Zhao; Xiang’an Tu; Shuai Huang; Xuenong Zou; Xinsheng Peng

The principal problem arising from prostate cancer (PCa) is its propensity to metastasize to bone and the mechanism(s) need to be further elucidated. The tumor suppressor p53 plays an important role in regulating the epithelial-mesenchymal transition (EMT) and cancer cell stemness, which have been proposed to play critical roles in cancer metastasis. MiR-145, a direct target of p53, represses bone metastasis of PCa and is involved in regulating EMT and cancer cell stemness. However, it is unknown whether wild‑type p53 (WT-p53) plays a role in regulating invasion, EMT and cancer cell stemness of PCa cells and whether miR-145 mediates the function of WT-p53. In the present study, we found that ectopic expression of WT-p53 inhibited the migration and invasion, and enhanced the adhesion of p53-null PC-3 cells derived from PCa bone metastasis. Furthermore, WT-p53 suppressed the expression of the mesenchymal markers fibronectin, vimentin, N-cadherin, ZEB2 and upregulated the expression of the epithelial marker E-cadherin in PC-3 cells. Moreover, WT-p53 also suppressed colony formation, tumor sphere formation and expression of CSC markers and stemness factors including CD44, Oct4, c-Myc and Klf4 in PC-3 cells. Importantly, WT-p53 upregulated the expression of miR-145, and the inhibitory effects of WT-p53 on migration, invasion, EMT and stemness of PC-3 cells were reversed by anti-miR-145. Together, our findings demonstrate that WT-p53 suppresses migration, invasion, EMT and stemness in PC-3 cells at least partially through modulating miR-145. These results suggest that loss of WT-p53 may promote the bone metastasis of PCa at least partially through repressing miR-145 to elevate EMT and stemness of cancer cells.


International Journal of Oncology | 2014

Loss of miR-100 enhances migration, invasion, epithelial-mesenchymal transition and stemness properties in prostate cancer cells through targeting Argonaute 2

Min Wang; Dong Ren; Wei Guo; Zeyu Wang; Shuai Huang; Hong Du; Libing Song; Xinsheng Peng

Evidence in literature has demonstrated that some microRNAs (miRNAs) play a pivotal role in most solid tumor metastasis. Previous studies have showed that miR-100 is downregulated in human prostate cancer tissue compared to normal prostate and also significantly decreased in bone metastatic prostate cancer samples compared with primary prostate cancer. Argonautexa02 (AGO2) is the core effector protein of the miRNA-induced silencing complex and overexpression of AGO2 might enhance tumor metastasis. However, it is unknown whether and how miR-100 and AGO2 regulates metastasis of prostate cancer. Here, we report that miR-100 negatively regulated migration, invasion, epithelial-mesenchymal transition (EMT), colony formation, spheroid formation and expression of the stemness factors c-Myc, Oct4 and Klf4 in PC-3 and DU145 cells. Furthermore, miR-100 expression was negatively correlated with bone metastasis of prostate cancer patients. Notably, luciferase assay showed that AGO2 was a direct target of miR-100. Downregulation of AGO2 repressed migration, invasion, EMT and stemness of prostate cancer cells, and reversed the effects seen with miR-100 downregulation. Downregulation of AGO2 enhanced expression of miR-34a and miR-125b which can suppress migration, invasion, EMT and stemness of cancer cells. Taken together, our findings indicate that loss of miR-100 promotes the metastatic ability of prostate cancer cells at least partially by upregulating AGO2 expression through modulating migration, invasion, EMT and stemness of cancer cells, and suggest that miR-100/AGO2 may play an important role in regulating the metastasis of prostate cancer and is a potential target of prevention and therapy.


International Journal of Oncology | 2016

N-cadherin promotes epithelial-mesenchymal transition and cancer stem cell-like traits via ErbB signaling in prostate cancer cells.

Min Wang; Dong Ren; Wei Guo; Shuai Huang; Zeyu Wang; Qiji Li; Hong Du; Libing Song; Xinsheng Peng

N-cadherin has been reported to be upregulated and associated with metastasis and poor prognosis in prostate cancer patients, however the underlying mechanism still remains puzzling. In the present study, we found that upregulation of N-cadherin enhanced, while downregulation of N-cadherin impaired the invasion, migration, and epithelial to mesenchymal transition (EMT) of prostate cancer (PCa) cells. Overexpression of N-cadherin increased the efficiency of colony and tumor spheroid formation and the stemness factor expression (including c-Myc, Klf4, Sox2 and Oct4), and vice versa. Furthermore, microarray analysis and western blot analysis mechanistically proved that N-cadherin activated ErbB signaling pathway by upregulating the expression of Grb2, pShc and pERK1/2. Importantly, the regulation of N-cadherin on EMT and stemness was counteracted by lapatinib, a specific ErbB signaling pathway inhibitor. Collectively, these findings demonstrate that N-cadherin regulates EMT and stemness of PCa cells via activating ErbB signaling pathway, which indicates the pivotal role of N-cadherin/ErbB axis in the metastasis of prostate cancer.


Breast Cancer Research | 2017

Thymosin beta 10 is a key regulator of tumorigenesis and metastasis and a novel serum marker in breast cancer

Xin Zhang; Dong Ren; Ling Guo; Lan Wang; Shu Wu; Chuyong Lin; Liping Ye; Jinrong Zhu; Jun Li; Libing Song; Huan-Xin Lin; Zhen-Yu He

BackgroundThymosin beta 10 (TMSB10) has been demonstrated to be involved in the malignant process of many cancers. The purpose of this study was to determine the biological roles and clinical significance of TMSB10 in breast cancer and to identify whether TMSB10 might be used as a serum marker for the diagnosis of breast cancer.MethodsTMSB10 expression was evaluated by immunohistochemical analysis (IHC) of 253 breast tumors and ELISA of serum from 80 patients with breast cancer. Statistical analysis was performed to explore the correlation between TMSB10 expression and clinicopathological features in breast cancer. Univariate and multivariate Cox regression analysis were performed to examine the association between TMSB10 expression and overall survival and metastatic status. In vitro and in vivo assays were performed to assess the biological roles of TMSB10 in breast cancer. Western blotting and luciferase assays were examined to identify the underlying pathway involved in the tumor-promoting role of TMSB10.ResultsWe found TMSB10 was upregulated in breast cancer cells and tissues. Univariate and multivariate analysis demonstrated that high TMSB10 expression significantly correlated with clinicopathological features, poor prognosis and distant metastases in patients with breast cancer. Overexpression of TMSB10 promotes, while silencing of TMSB10 inhibits, proliferation, invasion and migration of breast cancer cells in vitro and in vivo. Our results further reveal that TMSB10 promotes the proliferation, invasion and migration of breast cancer cells via AKT/FOXO signaling, which is antagonized by the AKT kinase inhibitor perifosine. Importantly, the expression of TMSB10 is significantly elevated in the serum of patients with breast cancer and is positively associated with clinical stages of breast cancer.ConclusionTMSB10 may hold promise as a minimally invasive serum cancer biomarker for the diagnosis of breast cancer and a potential therapeutic target which will facilitate the development of a novel therapeutic strategy against breast cancer.


Molecular Cancer | 2017

Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-ΚB signaling pathway

Dong Ren; Qing Yang; Yuhu Dai; Wei Guo; Hong Du; Libing Song; Xinsheng Peng

BackgroundThe primary issue arising from prostate cancer (PCa) is its high prevalence to metastasize to bone, which severely affects the quality of life and survival time of PCa patients. miR-210-3p is a well-documented oncogenic miRNA implicated in various aspects of cancer development, progression and metastasis. However, the clinical significance and biological roles of miR-210-3p in PCa bone metastasis remain obscure.MethodsmiR-210-3p expression was evaluated by real-time PCR in 68 bone metastatic and 81 non-bone metastatic PCa tissues. The biological roles of miR-210-3p in the bone metastasis of PCa were investigated both in vitro by EMT and Transwell assays, and in vivo using a mouse model of left cardiac ventricle inoculation. Bioinformatics analysis, real-time PCR, western blot and luciferase reporter analysis were applied to discern and examine the relationship between miR-210-3p and its potential targets. RT-PCR was performed to identify the underlying mechanism of miR-210-3p overexpression in bone metastasis of PCa. Clinical correlation of miR-210-3p with its targets was examined in human PCa and metastatic bone tissues.ResultsmiR-210-3p expression is elevated in bone metastatic PCa tissues compared with non-bone metastatic PCa tissues. Overexpression of miR-210-3p positively correlates with serum PSA levels, Gleason grade and bone metastasis status in PCa patients. Upregulating miR-210-3p enhances, while silencing miR-210-3p represses the EMT, invasion and migration of PCa cells in vitro. Importantly, silencing miR-210-3p significantly inhibits bone metastasis of PC-3 cells in vivo. Our results further demonstrate that miR-210-3p maintains the sustained activation of NF-κB signaling via targeting negative regulators of NF-κB signaling (TNF-α Induced Protein 3 Interacting Protein 1) TNIP1 and (Suppressor Of Cytokine Signaling 1) SOCS1, resulting in EMT, invasion, migration and bone metastasis of PCa cells. Moreover, our results further indicate that recurrent gains (amplification) contribute to miR-210-3p overexpression in a small number of PCa patients. The clinical correlation of miR-210-3p with SOCS1, TNIP1 and NF-κB signaling activity is verified in PCa tissues.ConclusionOur findings unravel a novel mechanism for constitutive activation of NF-κB signaling pathway in the bone metastasis of PCa, supporting a functional and clinical significance of epigenetic events in bone metastasis of PCa.


International Journal of Oncology | 2017

miR‑150 inhibits proliferation and tumorigenicity via retarding G1/S phase transition in nasopharyngeal carcinoma

Xiangyong Li; Liu Fm; Bihua Lin; Hai-qing Luo; Meilian Liu; Jinhua Wu; Caihong Li; Ronggang Li; Xin Zhang; Keyuan Zhou; Dong Ren

Cancer cells are characterized by a pathological manifestation of uncontrolled proliferation, which results in tumor formation. Therefore, it is necessary to improve understanding of the underlying mechanism of cell cycle control. Here, we report that miR-150 is downregulated in nasopharyngeal carcinoma tissues and cells. Upregulation of miR-150 suppresses nasopharyngeal carcinoma (NPC) cell proliferation and induces G1/S arrest in vitro, and inhibits tumorigenesis in vivo. Conversely, silencing miR-150 yields the opposite effect. Our results further demonstrate that miR-150 retards nasopharyngeal carcinoma cell proliferation and G1/S transition via targeting multiple cell cycle-related genes, including CCND1, CCND2, CDK2 and CCNE2. Therefore, our results uncover a novel mechanistic understanding of miR-150-mediated tumor suppression in NPC, which will facilitate the development of effective cancer therapies against nasopharyngeal carcinoma.


British Journal of Cancer | 2017

The TGF-β signalling negative regulator PICK1 represses prostate cancer metastasis to bone

Yuhu Dai; Dong Ren; Qing Yang; Yanmei Cui; Wei Guo; Yingrong Lai; Hong Du; Chuyong Lin; Jun Li; Libing Song; Xinsheng Peng

Backgroud:Constitutive activation of TGF-β signalling is a well-recognised mechanism in bone metastasis of prostate cancer (PCa). Protein Interacting with PRKCA 1 (PICK1) is a critical negative regulator of the TGF-β pathway. However, the clinical significance and biological role of PICK1 in PCa bone metastasis remain obscure.Methods:PICK1 expression is evaluated by immunohistochemistry (IHC) in 198 PCa patients. Statistical analysis is performed to explore correlation between PICK1 expression and clinicopathological features in PCa patients. The biological role of PICK1 is examined in PC-3 and C4-2B cells in vitro and a mouse intracardial model in vivo.Results:PICK1 expression is decreased in PCa tissues with bone metastasis and bone-derived cells and downregulation of PICK1 positively correlates with serum PSA level, Gleason grade and bone metastasis status in PCa patients. Overexpression of PICK1 suppresses PCa cell invasion and migration in vitro and bone metastasis in vivo. Our results further indicate downregulation of PICK1 is caused by miR-210-3p overexpression in PCa tissues with bone metastasis. Clinical negative correlation of PICK1 with miR-210-3p is confirmed in PCa tissues.Conclusions:Our findings uncover a novel functionally and clinically relevant epigenetic regulatory mechanism for constitutive activation of TGF-β signalling in bone metastasis of PCa.

Collaboration


Dive into the Dong Ren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuai Huang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Libing Song

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Wei Guo

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Xin Zhang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Min Wang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Qingde Wa

Zunyi Medical College

View shared research outputs
Top Co-Authors

Avatar

Yubo Tang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Chuyong Lin

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge