Dongbo Shi
Kyoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dongbo Shi.
Nature Neuroscience | 2010
Fadel Tissir; Yibo Qu; Mireille Montcouquiol; Libing Zhou; Kouji Komatsu; Dongbo Shi; Toshihiko Fujimori; Jason Labeau; Donatienne Tyteca; Pierre J. Courtoy; Yves Poumay; Tadashi Uemura; André M. Goffinet
Ependymal cells form the epithelial lining of cerebral ventricles. Their apical surface is covered by cilia that beat in a coordinated fashion to facilitate circulation of the cerebrospinal fluid (CSF). The genetic factors that govern the development and function of ependymal cilia remain poorly understood. We found that the planar cell polarity cadherins Celsr2 and Celsr3 control these processes. In Celsr2-deficient mice, the development and planar organization of ependymal cilia are compromised, leading to defective CSF dynamics and hydrocephalus. In Celsr2 and Celsr3 double mutant ependyma, ciliogenesis is markedly impaired, resulting in lethal hydrocephalus. The membrane distribution of Vangl2 and Fzd3, two key planar cell polarity proteins, was disturbed in Celsr2 mutants, and even more so in Celsr2 and Celsr3 double mutants. Our findings suggest that planar cell polarity signaling is involved in ependymal cilia development and in the pathophysiology of hydrocephalus, with possible implications in other ciliopathies.
Development | 2014
Dongbo Shi; Kouji Komatsu; Mayumi Hirao; Yayoi Toyooka; Hiroshi Koyama; Fadel Tissir; André M. Goffinet; Tadashi Uemura; Toshihiko Fujimori
The oviduct is an important organ in reproduction where fertilization occurs, and through which the fertilized eggs are carried to the uterus in mammals. This organ is highly polarized, where the epithelium forms longitudinal folds along the ovary-uterus axis, and the epithelial multicilia beat towards the uterus to transport the ovulated ova. Here, we analyzed the postnatal development of mouse oviduct and report that multilevel polarities of the oviduct are regulated by a planar cell polarity (PCP) gene, Celsr1. In the epithelium, Celsr1 is concentrated in the specific cellular boundaries perpendicular to the ovary-uterus axis from postnatal day 2. We found a new feature of cellular polarity in the oviduct – the apical surface of epithelial cells is elongated along the ovary-uterus axis. In Celsr1-deficient mice, the ciliary motion is not orchestrated along the ovary-uterus axis and the transport ability of beating cilia is impaired. Epithelial cells show less elongation and randomized orientation, and epithelial folds show randomized directionality and ectopic branches in the mutant. Our mosaic analysis suggests that the geometry of epithelial cells is primarily regulated by Celsr1 and as a consequence the epithelial folds are aligned. Taken together, we reveal the characteristics of the multilevel polarity formation processes in the mouse oviduct epithelium and suggest a novel function of the PCP pathway for proper tissue morphogenesis.
Genes to Cells | 2011
Dongbo Shi; Kouji Komatsu; Tadashi Uemura; Toshihiko Fujimori
The oviduct is important in reproduction where fertilization occurs, and the fertilized eggs are conveyed to the uterus. Multi‐ciliated cells of the oviductal epithelium and muscle contractions are believed to generate this unidirectional flow. Although there are many studies in human oviducts, there are few reports on mouse oviductal ciliary movements where we can dissect underlying genetic programs. To study ciliary movements in the mouse oviduct, we exposed the ovary‐side of the oviduct (infundibulum) longitudinally and recorded the ciliary beatings in a hanging drop preparation. We calculated the ciliary beat frequency (CBF) by automated image analysis and found that the average CBF was 10.9 ± 3.3 and 8.5 ± 2.5 Hz (±standard deviation) during the diestrus and estrus stages, respectively. Mapping of the CBF to multiple locations in the epithelium showed that the cilia beat regularly at a local level, but have a range of frequencies within the entire plane. We also observed ova with cumulus cells were transported to the uterus side by the opened oviduct at the diestrus and estrus stages. These results suggest that the ciliated cells of the infundibulum can generate unidirectional flows and are able to deliver ova by their ciliary activities despite their discordance in beating periodicity.
Developmental Cell | 2017
Katsura Minegishi; Masakazu Hashimoto; Rieko Ajima; Katsuyoshi Takaoka; Kyosuke Shinohara; Yayoi Ikawa; Hiromi Nishimura; Andrew P. McMahon; Karl Willert; Yasushi Okada; Hiroshi Sasaki; Dongbo Shi; Toshihiko Fujimori; Toshihisa Ohtsuka; Yasunobu Igarashi; Terry P. Yamaguchi; Akihiko Shimono; Hidetaka Shiratori; Hiroshi Hamada
Polarization of node cells along the anterior-posterior axis of mouse embryos is responsible for left-right symmetry breaking. How node cells become polarized has remained unknown, however. Wnt5a and Wnt5b are expressed posteriorly relative to the node, whereas genes for Sfrp inhibitors of Wnt signaling are expressed anteriorly. Here we show that polarization of node cells is impaired in Wnt5a-/-Wnt5b-/- and Sfrp mutant embryos, and also in the presence of a uniform distribution of Wnt5a or Sfrp1, suggesting that Wnt5 and Sfrp proteins act as instructive signals in this process. The absence of planar cell polarity (PCP) core proteins Prickle1 and Prickle2 in individual cells or local forced expression of Wnt5a perturbed polarization of neighboring wild-type cells. Our results suggest that opposing gradients of Wnt5a and Wnt5b and of their Sfrp inhibitors, together with intercellular signaling via PCP proteins, polarize node cells along the anterior-posterior axis for breaking of left-right symmetry.
Mechanisms of Development | 2016
Dongbo Shi; Fumiko Usami; Kouji Komatsu; Sanae Oka; Takaya Abe; Tadashi Uemura; Toshihiko Fujimori
The planar cell polarity (PCP) pathway regulates morphogenesis in various organs. The polarized localization is a key feature of core PCP factors for orchestrating cell polarity in an epithelial sheet. Several studies using Drosophila melanogaster have investigated the mechanism of the polarized localization. However, to what extent these mechanisms are conserved and how the polarization of core PCP factors is maintained in mature vertebrates are still open questions. Here, we addressed these questions by analyzing the dynamics of Vangl2, a member of core PCP factors, in the mouse oviduct epithelium. Multiple core PCP factors including Vangl2 were expressed in the mouse oviduct in postnatal stages. Vangl1, Vangl2 and Frizzled6 had polarized localization in the oviduct epithelium. Exogenously introduced expression of green fluorescent protein (GFP)-tagged core PCP factors by electroporation revealed that Vangl1, Vangl2 and Prickle2 are localized on the ovarian side of the cell periphery in the oviduct. To visualize the Vangl2 dynamics, we generated the R26-Vangl2-EGFP transgenic mice. In these mice, Vangl2-EGFP was ubiquitously expressed and showed polarized localization in multiple organs including the oviduct, the trachea, the lateral ventricle and the uterus. Fluorescence recovery after photobleaching (FRAP) analysis in the mature oviduct revealed that Vangl2 in the enriched subdomain of cell periphery (cellular edge) was more stable than Vangl2 in the less-enriched cellular edge. Furthermore, when a subregion of a Vangl2-enriched cellular edge was bleached, the Vangl2-enriched subregion neighboring the bleached region in the same cellular edge tended to decrease more intensities than the neighboring sub-region in the next Vangl2-enriched cellular edge. Finally, the polarization of Vangl2 was observed in nocodazole treated mouse viduct, suggesting the maintenance of Vangl2 asymmetry is independent of microtubule formation. Taken together, we revealed the characteristics of Vangl2 dynamics in the oviduct epithelium, and found that Vangl2 forms stable complex at the enriched cellular edge and forms compartments. Our data collectively suggest that the mechanism for maintenance of Vangl2 asymmetry in mature mouse oviduct is different from the microtubule dependent polarized transport model, which has been proposed for the reinforcement of the asymmetry of two core PCP proteins, Flamingo and Dishevelled, in the developing fly.
Mechanisms of Development | 2014
Yu Imuta; Hiroshi Koyama; Dongbo Shi; Mototsugu Eiraku; Toshihiko Fujimori; Hiroshi Sasaki
Mammalian embryos develop in coordination with extraembryonic tissues, which support embryonic development by implanting embryos into the uterus, supplying nutrition, providing a confined niche, and also providing patterning signals to embryos. Here, we show that in mouse embryos, the expansion of the amniotic cavity (AC), which is formed between embryonic and extraembryonic tissues, provides the mechanical forces required for a type of morphogenetic movement of the notochord known as convergent extension (CE) in which the cells converge to the midline and the tissue elongates along the antero-posterior (AP) axis. The notochord is stretched along the AP axis, and the expansion of the AC is required for CE. Both mathematical modeling and physical simulation showed that a rectangular morphology of the early notochord caused the application of anisotropic force along the AP axis to the notochord through the isotropic expansion of the AC. AC expansion acts upstream of planar cell polarity (PCP) signaling, which regulates CE movement. Our results highlight the importance of extraembryonic tissues as a source of the forces that control the morphogenesis of embryos.
Developmental Cell | 2013
Dongbo Shi; Toshihiko Fujimori; Tadashi Uemura
Planar cell polarity (PCP) signaling is involved in many polarized cell behaviors. In this issue of Developmental Cell, Tatin et al. (2013) show that the atypical cadherin Celsr1 is transiently localized to cellular protrusions in lymphatic endothelial cells and acts to orient valve-forming cells perpendicular to the vessel axis.
Archive | 2016
Dongbo Shi; Masaki Arata; Tadao Usui; Toshihiko Fujimori; Tadashi Uemura
In this chapter, two subfamilies of atypical cadherins are described: the subfamily of seven-pass transmembrane cadherins (7-TM cadherins) and Fat and Dachsous cadherins. Pioneering genetic studies in Drosophila have defined both subfamilies and dissected their roles in animal development. It is now clear that the founding members in Drosophila and their respective vertebrate homologues make critical and essential contributions to a variety of dynamic behaviors of cell populations, and that malfunctions of those atypical cadherins cause anomalies in embryonic development, resulting in postnatal organ malformation or embryonic demise. Here we discuss how the atypical cadherins control cell behaviors with the emphasis on one particular orchestration of cells along the axes of tissues, organs, or bodies, inclusively designated as planar cell polarity (PCP). Nowadays the purview of PCP ranges from the unidirectional orientation of subcellular structures, such as wing hairs of Drosophila and vertebrate motile cilia, to three-dimensional dynamics of multicellular units, such as tilting hair follicles, neural tube closure, epithelial folding in the oviduct, and collective cell migration. The PCP field is at an extraordinarily exciting juncture, bursting with questions about functions of 7-TM cadherins and Fat and Dachsous cadherins at the cellular and molecular level.
Current Opinion in Genetics & Development | 2017
Dongbo Shi; Tinatini Tavhelidse; Thomas Thumberger; Joachim Wittbrodt; Thomas Greb
Embryonic development is key for determining the architecture and shape of multicellular bodies. However, most cells are produced postembryonically in, at least partly, differentiated organs. In this regard, organismal growth faces common challenges in coordinating expansion and function of body structures. Here we compare two examples for postembryonic growth processes from two different kingdoms of life to reveal common regulatory principles: lateral growth of plants and the enlargement of the fish retina. In both cases, growth is based on stem cell systems mediating radial growth by a bifacial mode of tissue production. Surprisingly, although being evolutionary distinct, we find similar patterns in regulatory circuits suggesting the existence of preferable solutions to a common developmental problem.
Developmental Dynamics | 2014
Kousuke Mouri; Yutaro Nishino; Masaki Arata; Dongbo Shi; Shin-ya Horiuchi; Tadashi Uemura
Background: Planar cell polarity (PCP) originally referred to the coordination of global organ axes and individual cell polarity within the plane of the epithelium. More recently, it has been accepted that pertinent PCP regulators play essential roles not only in epithelial sheets, but also in various rearranging cells. Results: We identified pepsinogen‐like (pcl) as a new planar polarity gene, using Drosophila wing epidermis as a model. Pcl protein is predicted to belong to a family of aspartic proteases. When pcl mutant clones were observed in pupal wings, PCP was disturbed in both mutant and wild‐type cells that were juxtaposed to the clone border. We examined levels of known PCP proteins in wing imaginal discs. The amount of the seven‐pass transmembrane cadherin Flamingo (Fmi), one of the PCP “core group” members, was significantly decreased in mutant clones, whereas neither the amount of nor the polarized localization of Dachsous (Ds) at cell boundaries was affected. In addition to the PCP phenotype, the pcl mutation caused loss of wing margins. Intriguingly, this was most likely due to a dramatic decrease in the level of Wingless (Wg) protein, but not due to a decrease in the level of wg transcripts. Conclusions: Our results raise the possibility that Pcl regulates Wg expression post‐transcriptionally, and PCP, by proteolytic cleavages. Developmental Dynamics 243:791–799, 2014.