Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donghui Fu is active.

Publication


Featured researches published by Donghui Fu.


Journal of Experimental Botany | 2015

Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis

Fang Liu; Xiaobo Zhang; Changming Lu; Xinhua Zeng; Yunjing Li; Donghui Fu; Gang Wu

Plant non-specific lipid-transfer proteins (nsLTPs) are small, basic proteins present in abundance in higher plants. They are involved in key processes of plant cytology, such as the stablization of membranes, cell wall organization, and signal transduction. nsLTPs are also known to play important roles in resistance to biotic and abiotic stress, and in plant growth and development, such as sexual reproduction, seed development and germination. The structures of plant nsLTPs contain an eight-cysteine residue conserved motif, linked by four disulfide bonds, and an internal hydrophobic cavity, which comprises the lipid-binding site. This structure endows stability and increases the ability to bind and/or carry hydrophobic molecules. There is growing interest in nsLTPs, due to their critical roles, resulting in the need for a comprehensive review of their form and function. Relevant topics include: nsLTP structure and biochemical features, their classification, identification, and characterization across species, sub-cellular localization, lipid binding and transfer ability, expression profiling, functionality, and evolution. We present advances, as well as limitations and trends, relating to the different topics of the nsLTP gene family. This review collates a large body of research pertaining to the role of nsLTPs across the plant kingdom, which has been integrated as an in depth functional analysis of this group of proteins as a whole, and their activities across multiple biochemical pathways, based on a large number of reports. This review will enhance our understanding of nsLTP activity in planta, prompting further work and insights into the roles of this multifaceted protein family in plants.


Functional & Integrative Genomics | 2014

Horizontal gene transfer in plants

Caihua Gao; Xiaodong Ren; Annaliese S. Mason; Honglei Liu; Meili Xiao; Jiana Li; Donghui Fu

Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries. HGT often occurs in microbic and eukaryotic genomes. However, the pathways by which HGTs occur in multicellular eukaryotes, especially in plants, are not well understood. We systematically summarized more than ten possible pathways for HGT. The intimate contact which frequently occurs in parasitism, symbiosis, pathogen, epiphyte, entophyte, and grafting interactions could promote HGTs between two species. Besides these direct transfer methods, genes can be exchanged with a vector as a bridge: possible vectors include pollen, fungi, bacteria, viruses, viroids, plasmids, transposons, and insects. HGT, especially when involving horizontal transfer of transposable elements, is recognized as a significant force propelling genomic variation and biological innovation, playing an important functional and evolutionary role in both eukaryotic and prokaryotic genomes. We proposed possible mechanisms by which HGTs can occur, which is useful in understanding the genetic information exchange among distant species or distant cellular components.


BMC Genomics | 2013

Identification of genome-wide single nucleotide polymorphisms in allopolyploid crop Brassica napus

Shunmou Huang; Linbin Deng; Mei Guan; Jiana Li; Kun Lu; Hanzhong Wang; Donghui Fu; Annaliese S. Mason; Shengyi Liu; Wei Hua

BackgroundSingle nucleotide polymorphisms (SNPs) are the most common type of genetic variation. Identification of large numbers of SNPs is helpful for genetic diversity analysis, map-based cloning, genome-wide association analyses and marker-assisted breeding. Recently, identifying genome-wide SNPs in allopolyploid Brassica napus (rapeseed, canola) by resequencing many accessions has become feasible, due to the availability of reference genomes of Brassica rapa (2n = AA) and Brassica oleracea (2n = CC), which are the progenitor species of B. napus (2n = AACC). Although many SNPs in B. napus have been released, the objective in the present study was to produce a larger, more informative set of SNPs for large-scale and efficient genotypic screening. Hence, short-read genome sequencing was conducted on ten elite B. napus accessions for SNP discovery. A subset of these SNPs was randomly selected for sequence validation and for genotyping efficiency testing using the Illumina GoldenGate assay.ResultsA total of 892,536 bi-allelic SNPs were discovered throughout the B. napus genome. A total of 36,458 putative amino acid variants were located in 13,552 protein-coding genes, which were predicted to have enriched binding and catalytic activity as a result. Using the GoldenGate genotyping platform, 94 of 96 SNPs sampled could effectively distinguish genotypes of 130 lines from two mapping populations, with an average call rate of 92%.ConclusionsDespite the polyploid nature of B. napus, nearly 900,000 simple SNPs were identified by whole genome resequencing. These SNPs were predicted to be effective in high-throughput genotyping assays (51% polymorphic SNPs, 92% average call rate using the GoldenGate assay, leading to an estimated >450 000 useful SNPs). Hence, the development of a much larger genotyping array of informative SNPs is feasible. SNPs identified in this study to cause non-synonymous amino acid substitutions can also be utilized to directly identify causal genes in association studies.


Euphytica | 2014

Utilization of crop heterosis: a review

Donghui Fu; Meili Xiao; A. C. Hayward; Ying Fu; Gui Liu; Guanjie Jiang; Haihuan Zhang

Heterosis (or hybrid vigor) is a natural phenomenon whereby hybrid offspring of genetically diverse individuals display improved physical and functional characteristics relative to their parents. Heterosis has been increasingly applied in crop production for nearly a century, with the aim of developing more vigorous, higher yielding and better performing cultivars. In this review we present and compare three categories of crop heterosis utilization: intraspecific heterosis, intersubspecific heterosis and wide-hybridization heterosis, with particular focus on polyploid species. Different pollination-control systems used to breed for heterosis are also comparatively analyzed. Finally, we highlight problems involved in heterosis research and crop improvement. We aim to provide insight into best practices for amplifying heterosis potential.


Theoretical and Applied Genetics | 2008

Gene expression profiles associated with intersubgenomic heterosis in Brassica napus

Xin Chen; Maoteng Li; Jiaqin Shi; Donghui Fu; Wei Qian; Jun Zou; Chunyu Zhang; Jinling Meng

In order to understand the genetic mechanism of heterosis that has been observed in hybrids between Brassica napus and partial new-type B. napus which had exotic genome components from relative species, this study focused on the difference in gene expression patterns among partial new-typed B. napus lines, B. napus cultivars and their hybrids using the cDNA amplified fragment length polymorphism technique (cDNA-AFLP) technique. First, three partial new-type B. napus lines were compared with their original parents. One new line contained the exotic genomic components from B. rapa, and the other two new lines were obtained by the introgression of genomic components from B. rapa and B. carinata. The experimental results showed that the introgression of Ar and Cc genome components from B. rapa and B. carinata led to considerable differences in the gene expression profiles of the partial new-type lines when compared with their parents. Secondly, the gene expression profiles of nine cross-combinations between three partial new-type lines and three B. napus cultivars were compared. Twenty transcript-derived fragments (TDFs) associated with intersubgenomic heterosis were randomly selected and converted into PCR-based molecular markers. Some of them were mapped in the confidence intervals of quantitative trait loci (QTLs) for yield and yield-related traits in three segregative populations of B. napus. These results suggested that a proportion of the heterosis-associated TDFs were really responsible for fluctuating seed yield in rapeseed.


PLOS ONE | 2014

BraLTP1, a Lipid Transfer Protein Gene Involved in Epicuticular Wax Deposition, Cell Proliferation and Flower Development in Brassica napus

Fang Liu; Xiaojuan Xiong; Lei Wu; Donghui Fu; A. C. Hayward; Xinhua Zeng; Yinglong Cao; Yuhua Wu; Yunjing Li; Gang Wu

Plant non-specific lipid transfer proteins (nsLTPs) constitute large multigene families that possess complex physiological functions, many of which remain unclear. This study isolated and characterized the function of a lipid transfer protein gene, BraLTP1 from Brassica rapa, in the important oilseed crops Brassica napus. BraLTP1 encodes a predicted secretory protein, in the little known VI Class of nsLTP families. Overexpression of BnaLTP1 in B. napus caused abnormal green coloration and reduced wax deposition on leaves and detailed wax analysis revealed 17–80% reduction in various major wax components, which resulted in significant water-loss relative to wild type. BnaLTP1 overexpressing leaves exhibited morphological disfiguration and abaxially curled leaf edges, and leaf cross-sections revealed cell overproliferation that was correlated to increased cytokinin levels (tZ, tZR, iP, and iPR) in leaves and high expression of the cytokinin biosynthsis gene IPT3. BnaLTP1-overexpressing plants also displayed morphological disfiguration of flowers, with early-onset and elongated carpel development and outwardly curled stamen. This was consistent with altered expression of a a number of ABC model genes related to flower development. Together, these results suggest that BraLTP1 is a new nsLTP gene involved in wax production or deposition, with additional direct or indirect effects on cell division and flower development.


PLOS ONE | 2013

Evolutionary Dynamics of Microsatellite Distribution in Plants: Insight from the Comparison of Sequenced Brassica, Arabidopsis and Other Angiosperm Species

Jiaqin Shi; Shunmou Huang; Donghui Fu; Jinyin Yu; Xinfa Wang; Wei Hua; Shengyi Liu; Guihua Liu; Hanzhong Wang

Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences). The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number) of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type) the angiosperm species (aside from a few species) all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite distribution with respect to motif length, type and repeat number. Interestingly, several microsatellite characteristics seemed to be constant in plant evolution, which can be well explained by the general biological rules.


Molecular Breeding | 2014

In silico integration of quantitative trait loci for seed yield and yield-related traits in Brassica napus

Qinghong Zhou; Donghui Fu; Annaliese S. Mason; Yong-Jun Zeng; Chao-Xian Zhao; Yingjin Huang

Mapping quantitative trait loci (QTLs) is a foundation for molecular marker-assisted selection and map-based gene cloning. During the past decade, numerous QTLs for seed yield (SY) and yield-related traits in Brassicanapus L. have been identified. However, integration of these results in order to compare QTLs from different mapping populations has not been undertaken, due to the lack of common molecular markers between studies. Using previously reported Brassica rapa and Brassica oleracea genome sequences, we carried out in silico integration of 1,960 QTLs associated with 13 SY and yield-related traits from 15 B.napus mapping experiments over the last decade. A total of 736 SY and yield-related QTLs were mapped onto 283 loci in the A and C genomes of B. napus. These QTLs were unevenly distributed across the 19 B. napus chromosomes, with the most on chromosome A3 and the least on chromosome C6. Our integrated QTL map identified 142 loci where the conserved QTLs were detected and 25 multifunctional loci, mostly for the traits of flowering time (FT), plant height, 1,000-seed weight, maturity time and SY. These conserved QTLs and multifunctional loci may result from pleiotropism or clustered genes. At the same time, a total of 146 genes underlying the QTLs for FT and other yield-related traits were identified by comparative mapping with the Arabidopsis genome. These results facilitate the retrieval of B. napus SY and yield-related QTLs for research communities, increase the density of targeted QTL-linked markers, validate the existence of QTLs across different populations, and advance the fine mapping of genes.


Genomics | 2012

Characterization and functional annotation of nested transposable elements in eukaryotic genomes.

Caihua Gao; Meili Xiao; Xiaodong Ren; A. C. Hayward; Jiaming Yin; Likun Wu; Donghui Fu; Jiana Li

The movement of transposable elements (TE) in eukaryotic genomes can often result in the occurrence of nested TEs (the insertion of TEs into pre-existing TEs). We performed a general TE assessment using available databases to detect nested TEs and analyze their characteristics and putative functions in eukaryote genomes. A total of 802 TEs were found to be inserted into 690 host TEs from a total number of 11,329 TEs. We reveal that repetitive sequences are associated with an increased occurrence of nested TEs and sequence biased of TE insertion. A high proportion of the genes which were associated with nested TEs are predicted to localize to organelles and participate in nucleic acid and protein binding. Many of these function in metabolic processes, and encode important enzymes for transposition and integration. Therefore, nested TEs in eukaryotic genomes may negatively influence genome expansion, and enrich the diversity of gene expression or regulation.


Journal of Applied Genetics | 2015

What is crop heterosis: new insights into an old topic

Donghui Fu; Meili Xiao; A. C. Hayward; Guanjie Jiang; Longrong Zhu; Qinghong Zhou; Jiqiang Li; Min Zhang

Heterosis (or hybrid vigor) refers to a natural phenomenon whereby hybrid offspring of genetically diverse individuals out-perform their parents in multiple traits including yield, adaptability and resistances to biotic and abiotic stressors. Innovations in technology and research continue to clarify the mechanisms underlying crop heterosis, however the intrinsic relationship between the biological basis of heterosis remain unclear. In this review, we aim to provide insight into the molecular genetic basis of heterosis by presenting recent advances in the ‘omics’ of heterosis and the role of non-coding regions, particularly in relation to energy–use efficiency. We propose that future research should focus on integrating the expanding datasets from different species and hybrid combinations, to mine key heterotic genes and unravel interactive ‘omics’ networks associated with heterosis. Improved understanding of heterosis and the biological basis for its manipulation in agriculture should help to streamline its use in enhancing crop productivity.

Collaboration


Dive into the Donghui Fu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiana Li

Southwest University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. C. Hayward

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qinghong Zhou

Jiangxi Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wei Qian

Southwest University

View shared research outputs
Top Co-Authors

Avatar

Jun Zou

Huazhong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge