Jiaming Yin
Southwest University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiaming Yin.
Genomics | 2012
Caihua Gao; Meili Xiao; Xiaodong Ren; A. C. Hayward; Jiaming Yin; Likun Wu; Donghui Fu; Jiana Li
The movement of transposable elements (TE) in eukaryotic genomes can often result in the occurrence of nested TEs (the insertion of TEs into pre-existing TEs). We performed a general TE assessment using available databases to detect nested TEs and analyze their characteristics and putative functions in eukaryote genomes. A total of 802 TEs were found to be inserted into 690 host TEs from a total number of 11,329 TEs. We reveal that repetitive sequences are associated with an increased occurrence of nested TEs and sequence biased of TE insertion. A high proportion of the genes which were associated with nested TEs are predicted to localize to organelles and participate in nucleic acid and protein binding. Many of these function in metabolic processes, and encode important enzymes for transposition and integration. Therefore, nested TEs in eukaryotic genomes may negatively influence genome expansion, and enrich the diversity of gene expression or regulation.
Genetic Resources and Crop Evolution | 2010
Jiaqin Mei; Qinfei Li; X. Yang; Lunwen Qian; Liezhao Liu; Jiaming Yin; M. Frauen; Jiana Li; Wei Qian
Wild taxa in Brassica oleracea L. play an important role to improve cultivated crops, but the genomic relationships between wild and cultivated forms have not been well clarified. An overall survey of genomic relationships among 39 accessions covering 10 wild and 7 cultivared types in B. oleracea was performed using amplified fragment length polymorphism and simple sequence repeat. The cultivated types were clustered together with B. oleracea ssp. oleracea,B. incana, B. bourgeaui, B. montana, B. cretica and B. hilarionis, while 4 wild taxa from Sicily, B. rupestris, B. insularis, B. macrocarpa and B. villosa formed the other group. It implies the low possibility that current B. oleracea crops originated in Sicily.
Molecular Genetics and Genomics | 2011
Caihua Gao; Zhanglin Tang; Jiaming Yin; Zeshan An; Donghui Fu; Jiana Li
Simple sequence repeats (SSRs) are important components of eukaryotic genomes and may play an important role in regulating gene expression. However, the characteristics of genic SSRs and the effect of interspecific hybridization and polyploidization on genic SSRs seem not to have received desired attention in terms of scientific investigations. To determine the features of genic SSRs and elucidate their role in polyploidization process of the Brassica family, we identified SSRs in Plant Genome Database-assembled unique transcripts (PUTs) of Brassica species. A higher density of SSRs and a greater number of compound motif SSRs and mononucleotide motif types with large average number of repeats were detected in allotetraploid Brassica napus than in the diploid parental species (Brassica rapa and Brassica oleracea). In addition, a greater proportion of SSR-PUTs were found to be associated with the stress response and developmental processes in B. napus than in the parents. A negative correlation between the repeat number and the motif type and the total length, and a positive correlation between the repeat number and the total length of SSRs were observed. PUT-SSR might be generated from A/T-rich regions. The successful development of 123 pairs of SSR primers for Brassica PUTs showed that SSR-PUTs could be exploited as gene-based SSR functional markers for application in Brassica breeding. These results indicate that interspecific hybridization and polyploidization could trigger the amplification of SSRs, and long SSRs might become shorter to enable the plant to adapt to environmental and artificial selection.
Plant Biology | 2014
Zeshan An; Zhanglin Tang; Bi Ma; Annaliese S. Mason; Y. Guo; Jiaming Yin; Caihua Gao; Lijuan Wei; Jiana Li; Donghui Fu
Although many studies have shown that transposable element (TE) activation is induced by hybridisation and polyploidisation in plants, much less is known on how different types of TE respond to hybridisation, and the impact of TE-associated sequences on gene function. We investigated the frequency and regularity of putative transposon activation for different types of TE, and determined the impact of TE-associated sequence variation on the genome during allopolyploidisation. We designed different types of TE primers and adopted the Inter-Retrotransposon Amplified Polymorphism (IRAP) method to detect variation in TE-associated sequences during the process of allopolyploidisation between Brassica rapa (AA) and Brassica oleracea (CC), and in successive generations of self-pollinated progeny. In addition, fragments with TE insertions were used to perform Blast2GO analysis to characterise the putative functions of the fragments with TE insertions. Ninety-two primers amplifying 548 loci were used to detect variation in sequences associated with four different orders of TE sequences. TEs could be classed in ascending frequency into LTR-REs, TIRs, LINEs, SINEs and unknown TEs. The frequency of novel variation (putative activation) detected for the four orders of TEs was highest from the F1 to F2 generations, and lowest from the F2 to F3 generations. Functional annotation of sequences with TE insertions showed that genes with TE insertions were mainly involved in metabolic processes and binding, and preferentially functioned in organelles. TE variation in our study severely disturbed the genetic compositions of the different generations, resulting in inconsistencies in genetic clustering. Different types of TE showed different patterns of variation during the process of allopolyploidisation.
Molecular Biology Reports | 2012
Caihua Gao; Meili Xiao; Lingyan Jiang; Jiana Li; Jiaming Yin; Xiaodong Ren; Wei Qian; Ortegón Oscar; Donghui Fu; Zhanglin Tang
Transposable elements (TEs) have attracted increasing attention because of their tremendous contributions to genome reorganization and gene variation through dramatic proliferation and excision via transposition. However, less known are the transcriptional activation of various TEs and the characteristics of TE insertion into genomes at the genome-wide level. In the present study, we focused on TE genes for transposition and gene disruption by insertion of TEs in expression sequences of Brassica, to investigate the transcriptional activation of TEs, the biased insertion of TEs into genes, and their salient characteristics. Long terminal repeat (LTR-retrotransposon) accounted for the majority of these active TE genes (70.8%), suggesting that transposition activation varied with TE type. 6.1% genes were interrupted by LTR-retrotransposons, which indicated their preference for insertion into genes. TEs were preferentially inserted into cellular component-specific genes acted as “binding” elements and involved in metabolic processes. TEs have a biased insertion into some host genes that were involved with important molecular functions and TE genes exhibited spatiotemporal expression. These results suggested that various types of transposons differentially contributed to gene variation and affected gene function.
Journal of Molecular Evolution | 2014
Lijuan Wei; Zeshan An; Annaliese S. Mason; Meili Xiao; Ying Guo; Jiaming Yin; Jiana Li; Donghui Fu
Allopolyploidization, where two species come together to form a new species, plays a major role in speciation and genome evolution. Transfer RNAs (abbreviated tRNA) are typically 73–94 nucleotides in length, and are indispensable in protein synthesis, transferring amino acids to the cell protein synthesis machinery (ribosome). To date, the regularity and function of tRNA gene sequence variation during the process of allopolyploidization have not been well understood. In this study, the inter-tRNA gene corresponding to tRNA amplification polymorphism method was used to detect changes in tRNA gene sequences in the progeny of interspecific hybrids between Brassica rapa and B. oleracea, mimicking the original B. napus (canola) species formation event. Cluster analysis showed that tRNA gene variation during allopolyploidization did not appear to have a genotypic basis. Significant variation occurred in the early generations of synthetic B. napus (F1 and F2 generations), but fewer alterations were observed in the later generation (F3). The variation-prone tRNA genes tended to be located in AT-rich regions. BlastN analysis of novel tRNA gene variants against a Brassica genome sequence database showed that the variation of these tRNA-gene-associated sequences in allopolyploidization might result in variation of gene structure and function, e.g., metabolic process and transport.
Gene | 2012
Honglei Liu; Jiaming Yin; Meili Xiao; Caihua Gao; Annaliese S. Mason; Zunkang Zhao; Yingchun Liu; Jiana Li; Donghui Fu
Archive | 2010
Jiana Li; Qinfei Li; Feo Martin; Jiaqin Mei; Wei Qian; Jiaming Yin
Archive | 2012
Chao Li; Mao Lin; Jiana Li; Jiaming Yin; Bin Yang; Huagui Xiao; Yong Rao
Planta | 2016
Ying Fu; Meili Xiao; Huasheng Yu; Annaliese S. Mason; Jiaming Yin; Jiana Li; Dongqing Zhang; Donghui Fu