Dongil Kim
Kyungpook National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dongil Kim.
Bioorganic & Medicinal Chemistry | 1995
Hong-Seok Kim; Sang Ho Oh; Dongil Kim; In-Chul Kim; Kyung-Hyun Cho; Yong Bok Park
Described herein are the chemical syntheses of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one and 3 beta-hydroxy-5 alpha-cholest-8(14),16-dien-15-one from diosgenin and the examinations of their ability to inhibit the cholesteryl ester transfer protein (CETP). Clemmensen reduction of diosgenin gave cholest-5-ene-3 beta, 16 beta,26-triol. Tosylation of the latter compound gave cholest-5-ene-3 beta,16 beta,26-triol 26-tosylate which, upon reduction with LiAIH4, gave cholest-5-ene-3 beta,16 beta-diol. Hydrogenation-benzoylation of the latter to 5 alpha-cholest-3 beta,16 beta-diol 3 beta-benzoate followed by mesylation-elimination gave 5 alpha-cholest-16-ene-3 beta-ol 3 beta-benzoate. Controlled oxidation of the latter with CrO3-dimethylpyrazole gave 3 beta-hydroxy-5 alpha, 14 alpha-cholest-16-en-15-one 3 beta-benzoate. Oxidation of delta 16-15-one with SeO2 gave 3 beta-hydroxy-5 alpha-cholest-8(14),16-dien-15-one 3 beta-benzoate along with 3 beta-hydroxy-5 alpha, 14 beta-cholest-16-en-15-one 3 beta-benzoate. Selective hydrogenation of the delta 8(14),16-15-ketosteryl ester, followed by base hydrolysis gave 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one. Hydrolysis of 3 beta-hydroxy-5 alpha-cholest-8(14),16-dien-15-one 3 beta-benzoate in basic media gave 3 beta-hydroxy-5 alpha-cholest-8(14),16-dien-15-one. The effects of the 15-ketosterols on the CETP activity were studied in vitro by incubating cholesteryl ester donor (HDL), cholesteryl ester acceptor (LDL) and human plasma as a CETP source at 37 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)
Journal of Coordination Chemistry | 2014
Dongil Kim; Yujin Song; Sung-Hoon Kim; Ha-Jin Lee; Hyosun Lee
The reaction of [Pd(CH3CN)2Cl2] with N-functional group-substituted 2-iminomethylpyridine and 2-iminomethylquinoline can produce N,N′,X-bidentate Pd(II) complexes and N,N′,X-tridentate Pd(II) complexes depending on the functional group substitution on the nitrogen of the imine moiety. For example, N,N-dimethyl-3-((pyridin-2-ylmethylene)amino)propan-1-amine (L1), N,N-dimethyl-3-((quinolin-2-ylmethylene)amino)propan-1-amine (L2), and N-(3-(methylthio)propyl)-1-(pyridin-2-yl)methanimine (L3) were coordinated to palladium as N,N′,X-tridentate mode in the presence of NaClO4 to yield two fused ring metallacyclic [(NN′X)PdCl]ClO4 complexes with high yield, i.e. [LnPdCl]ClO4 (Ln = L1, L2, L3), respectively. However, N-methyl-N-(3-((pyridin-2-ylmethylene)amino)propyl)aniline (L4) and N-(3-methoxypropyl)-1-(pyridin-2-yl)methanimine (L5) yield (in the absence of NaClO4) N,N′,X-bidentate metallacyclic [(NN′)PdCl2] complexes with high yield, i.e. [L4PdCl2] and [L5PdCl2], respectively. The X-ray crystal structure of Pd(II) complexes revealed that the palladium in [LnPdCl]ClO4 (Ln = L1, L2, L3) and [LnPdCl2] (Ln = L4, L5) formed a slightly distorted square planar geometry involving two nitrogens of iminomethylpyridine ligand, one X, and one or two chlorides. The N,N′,X-tridentate complex [L2PdCl]ClO4 and the N,N′,X-bidentate complex [L5PdCl2] showed high catalytic activity for polymerization of methyl methacrylate in the presence of co-catalyst, modified methylaluminoxane at 60 °C compared to the reference complex anhydrous [PdCl2]. Specifically, the activities of [L2PdCl]ClO4 and [L4PdCl2] were 1.43 × 105 and 1.08 × 105 g PMMA M−1 Pd h, respectively. The syndiotacticity of poly(methylmethacrylate) (PMMA), which was characterized using 1H NMR spectroscopy, was about 0.70 for the [L2PdCl]ClO4 and [L4PdCl2] complexes. Graphical Abstract A new series of N,N′,X-tridentate complexes, [LnPdCl]ClO4 (Ln = L1, L2, L3) and N,N′,X-bidentate complexes, [LnPdCl2] (Ln = L4, L5) containing N-functional group-substituted 2-iminomethylpyridine and 2-iminomethylquinoline ligands (Ln) were synthesized and characterized by X-ray crystallography. It showed that the coordination geometry around the palladium center of all Pd(II) complexes was slightly distorted square planar. The catalytic activity of Pd(II) complexes for methyl methacrylate polymerization was investigated.
Australian Journal of Chemistry | 2014
Sung-Hoon Kim; Dongil Kim; Yujin Song; Ha-Jin Lee; Hyosun Lee
The reaction of [Pd(CH3CN)2Cl2] with N′-substituted N,N-di(2-picolyl)amine-based ancillary ligands, for example N,N-di(2-picolyl)cyclohexylmethylamine (L1), N,N-di(2-picolyl)benzylamine (L2), N,N-di(2-picolyl)aniline (L3), and 1,4-bis[bis(2-pyridylmethyl)aminomethyl]benzene (L4), in the presence of NaClO4 in ethanol yields a new series of [(NN′N)PdCl]X (X = ClO4, Cl) complexes, i.e. mononuclear [LnPdCl]ClO4 (Ln = L1, L2, L3) and binuclear [L4Pd2Cl2]Cl2. X-Ray crystallographic analysis determined that the Pd atom in complexes [(NN′N)PdCl]X showed a slightly distorted square-planar geometry involving three nitrogen atoms and a chlorido ligand. Moreover, the unit cell included a ClO4– or Cl– anion as the counterion. The complex [L1PdCl]ClO4 showed the highest catalytic activity for the polymerisation of methyl methacrylate in the presence of modified methylaluminoxane at 60°C among the mononuclear PdII complexes. Specifically, the activity of binuclear [L4Pd2Cl2]Cl2 was 2-fold higher than the corresponding mononuclear [L2PdCl]ClO4 per active palladium metal centre.
Steroids | 1999
Hong-Seok Kim; Dongil Kim
(25R)-3beta,26-Dihydroxy-5alpha-cholest-8(14)-en-15-one (1) and (25R)-3beta,26-dihydroxy-5alpha,14beta-cholest-16-en-1 5-one (2) were synthesized from (25R)-3beta,26-dibenzoyloxy-5alpha,14alpha-chole st-16-ene (4). Oxidation of 4 with CrO3-3,5-dimethylpyrazole at -20 degrees C gave (25R)-3beta,26-dibenzoyloxy-5alpha,14alpha-chole st-16-en-15-one (5) along with (25R)-3beta,26-dibenzoyloxy-5alpha-cholest-16alpha+ ++,17alpha-epoxide (6). Oxidation of 5 with selenium dioxide afforded (25R)-3beta,26-dibenzoyloxy-5alpha-cholest-8(14),16-++ +dien-15-one (7) and (25R)-3beta,26-dibenzoyloxy-5alpha,14beta-choles t-16-en-15-one (8). Selective hydrogenation of 7 followed by hydrolysis in alcoholic potassium hydroxide yielded (25R)-3beta,26-dihydroxy-5alpha-cholest-8(14)-en-15-one (1). Hydrolysis of 5 and 8 in alcoholic potassium hydroxide provided (25R)-3beta,26-dihydroxy-5alpha,14beta-cholest-16-en-1 5-one (2).
Polyhedron | 2012
Eunhee Kim; Hyun Yul Woo; Sung-Hoon Kim; Ha-Jin Lee; Dongil Kim; Hyosun Lee
Polyhedron | 2013
Dongil Kim; Sung-Hoon Kim; Eunhee Kim; Ha-Jin Lee; Hyosun Lee
Inorganic Chemistry Communications | 2014
Yujin Song; Dongil Kim; Ha-Jin Lee; Hyosun Lee
Journal of Molecular Structure | 2014
Sung-Hoon Kim; Dongil Kim; Ha-Jin Lee; Hyosun Lee
Journal of The Korean Chemical Society | 2005
Jong-Ha Choi; In-Gyung Oh; Woo-Taik Lim; Keon-Sang Ryoo; Dongil Kim; Yu-Chul Park
Applied Organometallic Chemistry | 2014
Dongil Kim; Sung-Hoon Kim; Hyun Yul Woo; Ha-Jin Lee; Hyosun Lee