Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donglei Wu is active.

Publication


Featured researches published by Donglei Wu.


Journal of Hazardous Materials | 2007

Anoxic sulfide biooxidation using nitrite as electron acceptor

Qaisar Mahmood; Ping Zheng; Jing Cai; Donglei Wu; Baolan Hu; Li J

Biotechnology can be used to assess the well being of ecosystems, transform pollutants into benign substances, generate biodegradable materials from renewable sources, and develop environmentally safe manufacturing and disposal processes. Simultaneous elimination of sulfide and nitrite from synthetic wastewaters was investigated using a bioreactor. A laboratory scale anoxic sulfide-oxidizing (ASO) reactor was operated for 135 days to evaluate the potential for volumetric loading rates, effect of hydraulic retention time (HRT) and substrate concentration on the process performance. The maximal sulfide and nitrite removal rates were achieved to be 13.82 and 16.311 kg/(m3 day), respectively, at 0.10 day HRT. The process can endure high sulfide concentrations, as the sulfide removal percentage always remained higher than 88.97% with influent concentration up to 1920 mg/L. Incomplete sulfide oxidation took place due to lower consumed nitrite to sulfide ratios of 0.93. It also tolerated high nitrite concentration up to 2265.25mg/L. The potential achieved by decreasing HRT at fixed substrate concentration is higher than that by increasing substrate concentration at fixed HRT. The process can bear short HRT of 0.10 day but careful operation is needed. Nitrite conversion was more sensitive to HRT than sulfide conversion when HRT was decreased from 1.50 to 0.08 day. Stoichiometric analyses and results of batch experiments show that major part of sulfide (89-90%) was reduced by nitrite while some autooxidation (10-11%) was resulted from presence of small quantities of dissolved oxygen in the influent wastewater. There was ammonia amassing in considerably high amounts in the bioreactor when the influent nitrite concentration reached above 2265.25mg/L. High ammonia concentrations (200-550 mg/L) in the bioreactor contributed towards the overall inhibition of the process. Present biotechnology exhibits practical value with a high potential for simultaneous removal of nitrite and sulfide from concentrated wastewaters at shorter HRT.


Journal of Colloid and Interface Science | 2014

Nanoscale Zero-Valent Iron (nZVI) assembled on magnetic Fe3O4/graphene for Chromium (VI) removal from aqueous solution

Xiaoshu Lv; Xiaoqin Xue; Guangming Jiang; Donglei Wu; Tiantian Sheng; Hongyi Zhou; Xinhua Xu

Nanoscale Zero-Valent Iron (nZVI) assembled on magnetic Fe3O4/graphene (nZVI@MG) nanocomposites was synthesized for Cr(VI) removal from aqueous solution. nZVI particles were perfectly dispersed either among Fe3O4 nanoparticles (Fe3O4 NPs) or above the basal plane of graphene. This material shows Cr(VI) removal efficiency of 83.8%, much higher than those of individuals (18.0% for nZVI, 21.6% for Fe3O4 NPs and 23.7% for graphene) and even their sum of 63.3%. The removal process obeys pseudo-second-order adsorption model, suggesting that adsorption is rate-controlling step. Maximum Cr(VI) adsorption capacity varies from 66.2 to 101.0 mg g(-1) with decreasing pH from 8.0 to 3.0 at 30°C. Negative ΔG and ΔH indicate spontaneous tendency and exothermic nature. Robust performance of nZVI@MG arises from the formation of micro-nZVI-graphene/nZVI-Fe3O4 batteries and strong adsorption capability of broad graphene sheet/Fe3O4 surfaces. Electrons released by nZVI spread all over the surfaces of graphene and Fe3O4, and the adsorbed Cr(VI) ions on them capture these floating electrons and reduce to Cr(III). Fe3O4 NPs also served as protection shell to prevent nZVI from agglomeration and passivation.


Journal of Hazardous Materials | 2013

Effects of nanoscale zero-valent iron particles on biological nitrogen and phosphorus removal and microorganisms in activated sludge

Donglei Wu; Yanhong Shen; Aqiang Ding; Qaisar Mahmood; Shuai Liu; Qiaoping Tu

The use of nanoscale zero-valent iron (NZVI) particles in environmental remediation and wastewater treatment has recently increased. The effects of NZVI on nitrogen and phosphorus removal were examined under continuous aerobic/anaerobic conditions by employing activated sludge. NZVI did not display any measurable effect on nitrogen removal at the concentration of 50mg/L and below. However, 200mg/L of NZVI inhibited NH4(+)-N removal. The addition of NZVI at 20mg/L and above significantly (p<0.05) improved the phosphorous removal. The microbial activities were inhibited upon exposure to NZVI according to the ATP and reactive oxygen species (ROS) results. In comparison to control, the ATP content decreased by around 13%, 31% and 43% at the NZVI doses of 20, 50, and 200mg/L, respectively, probably due to ROS production under NZVI exposure. Lactate dehydrogenase (LDH) release assay suggested that NZVI concentration of 200mg/L cast adverse effects on microorganisms. Interestingly, lower concentrations of NZVI (20 and 50mg/L) boosted the dehydrogenase activity; however, approximately 19% depression in dehydrogenase activity was detected at 200mg/L. The high throughput 16S rDNA pyrosequencing results indicated that uncultured bacterial genera Sinobacteraceae, Xanthomonadaceae, Alcaligenaceae and Propionivibrio were sensitive to NZVI particles.


Journal of Hazardous Materials | 2013

Fe0-Fe3O4 nanocomposites embedded polyvinyl alcohol/sodium alginate beads for chromium (VI) removal

Xiaoshu Lv; Guangming Jiang; Xiaoqin Xue; Donglei Wu; Tiantian Sheng; Chen Sun; Xinhua Xu

In this study, Fe(0)-Fe3O4 nanocomposites embedded polyvinyl alcohol (PVA)/sodium alginate (SA) beads were synthesized, which exhibited an excellent physical properties and catalytic reactivity, and a robust performance of post-separation (complete separation using a simple grille) and reusability (efficiency of 69.8% after four runs) in Cr(VI) removal. 5.0 wt% PVA with 1.5 wt% SA was the optimal proportion for beads molding, and the followed acidification and reduction treatments were critical to ensure high mechanical strength and high Cr(VI) removal ability of beads. Effects of Fe(0) and Fe3O4 mass fraction, initial pH and Cr(VI) concentration on final removal efficiency were also evaluated. Merely 0.075 wt% Fe(0) together with 0.30 wt% Fe3O4 was sufficient to deal with 20 mg L(-1) Cr(VI) solution. The efficiency decreased from 100 to 79.5% as initial Cr(VI) increased from 5 to 40 mg L(-1), while from 99.3 to 76.3% with increasing pH from 3.0 to 11.0. This work provides a practical and high-efficient method for heavy metal removal from water body, and simultaneously solves the problems in stabilization, separation and regeneration of Fe(0) nanoparticles.


Journal of Hazardous Materials | 2010

Low temperature conversion of plastic waste into light hydrocarbons.

Sajid Hussain Shah; Zahid Mahmood Khan; Iftikhar Ahmad Raja; Qaisar Mahmood; Zulfiqar Ahmad Bhatti; Jamil Khan; Ather Farooq; Naim Rashid; Donglei Wu

Advance recycling through pyrolytic technology has the potential of being applied to the management of plastic waste (PW). For this purpose 1 l volume, energy efficient batch reactor was manufactured locally and tested for pyrolysis of waste plastic. The feedstock for reactor was 50 g waste polyethylene. The average yield of the pyrolytic oil, wax, pyrogas and char from pyrolysis of PW were 48.6, 40.7, 10.1 and 0.6%, respectively, at 275 degrees C with non-catalytic process. Using catalyst the average yields of pyrolytic oil, pyrogas, wax and residue (char) of 50 g of PW was 47.98, 35.43, 16.09 and 0.50%, respectively, at operating temperature of 250 degrees C. The designed reactor could work at low temperature in the absence of a catalyst to obtain similar products as for a catalytic process.


Journal of Hazardous Materials | 2015

Performance of a zero valent iron-based anaerobic system in swine wastewater treatment.

Donglei Wu; Shuangshuang Zheng; Aqiang Ding; Guodong Sun; Meiqing Yang

In this paper, short-term exposure experiments with different ZVI concentrations were conducted to research the effects of ZVI adding on the anaerobic system for treating swine wastewater. Increasing the ZVI dose had a stimulatory effect on COD removal and CH4 production possibly due to a higher corrosion-induced H2 and dissolved ferrous ions, which could stimulate the methanogenesis and thus the biodegradation. In addition, the abiotic corrosion reactions such as flocculation, adsorption and precipitation were inevitable to removal some suspended COD. However, high ZVI doses had a potential risk on microorganism due to the present of large numbers of solid iron species in sludge, which likely encapsulated the cells and even damaged the cellular structure. Taken as a whole, the most enhancing effect induced by ZVI was observed at the rZVI/VSS of 2.63, and the maximum efficiency of per ZVI adding occurred at the rZVI/VSS of 0.74. But the ZVI concentration of 50 g/L (the rZVI/VSS was 5.26) was proved too high to facilitate microorganism activity, considering the higher LDH leakage and lower intracellular ATP level than the only sludge system.


Environmental Technology | 2013

Phosphate removal from aqueous solutions by nanoscale zero-valent iron

Donglei Wu; Yanhong Shen; Aqiang Ding; Mengyu Qiu; Qi Yang; Shuangshuang Zheng

In this study, nanoscale zero-valent iron (NZVI) was synthesized by conventional liquid-phase chemical reduction methods without a support material and then characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of NZVI particles on phosphate removal from aqueous solutions was examined. The results showed that the phosphate removal efficiency increased from 34.49% to 87.01% as the dosage of nanoscale iron particles increased from 100 to 600 mg L−1 with an initial phosphate concentration of 10 mg L−1, and the phosphate removal efficiency decreased from 72.89% to 51.39% as the initial phosphate concentration increased from 10 to 90 mg L−1, with 400 mg L−1 NZVI. Phosphate removal efficiencies of 99.41% and 95.09% were achieved at pH values of 2 and 4, respectively, with an initial phosphate concentration of 20 mg L−1 and 400 mg L−1 NZVI. The use of NZVI particles synthesized in a carboxymethyl cellulose (CMC)–water solution significantly enhanced phosphate removal from an aqueous solution compared with the use of NZVI synthesized in an ethanol–water solution. NZVI particles achieved 71.34% phosphate removal, which was remarkably higher than that of microscale zero-valent iron (MZVI) particles (16.35%) with 10 mg L−1 of phosphate and 400 mg L−1 iron. Based on the removal mechanism analysis performed in this study, we recommend that phosphate removal be accomplished by simultaneous adsorption and chemical precipitation. The XRD patterns of the NZVI before and after the reactions indicated the formation of crystalline vivianite (Fe3(PO4)2·8H2O) during the procedure.


Chemosphere | 2012

Ozonation as an advanced oxidant in treatment of bamboo industry wastewater.

Donglei Wu; Zhizhong Yang; Wei Wang; Guangming Tian; Shengnan Xu; Atreyee Sims

The present study employed ozonation process to treat the bamboo industry wastewater (BIWW). The impact of ozone dosage and initial organic concentration on color, COD and TOC removal rates were studied along with characterization of the major organics in raw and treated wastewater. The results suggested the ozone dosage of 3.15 g h(-1) (concentration 52.5 mg L(-1)) was suitable for the treatment. After 25 min ozonation of 1L raw wastewater, the color, COD and TOC removal efficiencies were 95%, 56% and 40%, respectively, with an influent COD concentration of 835 mg L(-1). The ratio of kg O(3) kg(-1) COD at 3.15 g h(-1) was 2.8 (<3), revealing that ozonation was a cost effective process for tertiary treatment of BIWW. Longer oxidization time was required to achieve similar results for raw wastewater with higher COD concentration. The chromatogram from gel permeation chromatography revealed that ozonation resulted in the breakdown of high molecular weight compounds into lower molecular weight components but could not completely mineralize the organic matter. The majority of these compounds were identified in both raw and ozonated samples via GC-MS analysis. In addition to ester derivatives as the main intermediates of ozonation, 1-chloroctadecane, methyl stearate, benzophenone and α-cyperone were identified as the by-products of ozonation.


Anaerobe | 2009

Isolation and characterization of Pseudomonas stutzeri QZ1 from an anoxic sulfide-oxidizing bioreactor

Qaisar Mahmood; Ping Zheng; Baolan Hu; Ghulam Jilani; Muhammad Rashid Azim; Donglei Wu; Dan Liu

Bacterial strain QZ1 was isolated from sludge of anoxic sulfide-oxidizing (ASO) reactor. Based on 16S rDNA sequence analysis and morphological characteristics, the isolate was identified as Pseudomonas stutzeri. The isolate was found to be a facultative chemolithotroph, using sulfide as electron donor and nitrite as electron acceptor. The strain QZ1 produced sulfate as the major product of sulfide oxidation, depending on the initial sulfide and nitrite concentrations. The isolate was capable of growth under strictly autotrophic conditions. The growth and substrate removal of Pseudomonas stutzeri QZ1 were optimal at an initial pH of 7.5-8.0 at 30 degrees C. The specific growth rate (mu) was found as 0.035 h(-1) with a doubling time of 21.5 h. For isolate QZ1, the EC(50) values both for sulfide and nitrite were found to be 335.95 mg S L(-1) and 512.38 mg N L(-1), respectively, showing that the sulfide oxidation into sulfate by Pseudomonas stutzeri QZ1 was badly affected beyond these substrate concentrations.


Journal of Hazardous Materials | 2011

Kinetics and equilibrium adsorption studies of dimethylamine (DMA) onto ion-exchange resin.

Qinhai Hu; Yuanyuan Meng; Tongxi Sun; Qaisar Mahmood; Donglei Wu; Jianhang Zhu; George Lu

The fine grained resin ZGSPC106 was used to adsorb dimethylamine (DMA) from aqueous solution in the present research. Batch experiments were performed to examine the effects of initial pH of solution and agitation time on the adsorption process. The thermodynamics and kinetics of adsorption were also analyzed. The maximum adsorption was found at natural pH of DMA solution and equilibrium could be attained within 12 min. The equilibrium adsorption data were conformed satisfactorily to the Langmuir equation. The evaluation based on Langmuir isotherm gave the maximal static saturated adsorption capacity of 138.89 mg/g at 293K. Various thermodynamic parameters such as free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) showed that the adsorption was spontaneous, endothermic and feasible. DMA adsorption on ZGSPC106 fitted well to the pseudo-second-order kinetic model. Furthermore, the adsorption mechanism was discussed by Fourier transform infrared spectroscopy (FT-IR) analysis.

Collaboration


Dive into the Donglei Wu's collaboration.

Top Co-Authors

Avatar

Ping Zheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qaisar Mahmood

COMSATS Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Qaisar Mahmood

COMSATS Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shams Ali Baig

Abdul Wali Khan University Mardan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge