Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qaisar Mahmood is active.

Publication


Featured researches published by Qaisar Mahmood.


Journal of Zhejiang University-science B | 2007

Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops

Ejaz ul Islam; Xiaoe Yang; Zhenli He; Qaisar Mahmood

Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary toxicity.


Journal of Hazardous Materials | 2008

Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance

Xiaofen Jin; Xiaoe Yang; Ejazul Islam; Dan Liu; Qaisar Mahmood

Plant growth, ultrastructural and antioxidant adaptations and glutathione biosynthesis in Cd-hyperaccumulating ecotype Sedum alfredii Hance (HE) countering high Cd environment were investigated and compared with its non Cd-hyperaccumulating ecotype (NHE). Cadmium exposure resulted in significant ultrastructural changes in root meristem and leaf mesophyll cells of S. alfredii, but damage was more pronounced in NHE even when Cd concentrations were one-tenth of those applied to HE. Cadmium stress damaged chloroplasts causing imbalanced lamellae formation coupled with early leaf senescence. Histochemical results revealed that glutathione (GSH) biosynthesis inhibition led to overproduction of hydrogen peroxide (H(2)O(2)) and superoxide radical (O(2)(*-)) in HE but not in NHE. Differences were noted in both HE and NHE for catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR) activities under various Cd stress levels. No relationship was found between antioxidative defense capacity including activities of superoxide dismutase (SOD), CAT, GPX, APX and GR as well as ascorbic acid (AsA) contents and Cd tolerance in the two ecotypes of S. alfredii. The GSH biosynthesis induction in root and shoot exposed to elevated Cd conditions may be involved in Cd tolerance and hyperaccumulation in HE of S. alfredii H.


Journal of Hazardous Materials | 2007

Anoxic sulfide biooxidation using nitrite as electron acceptor

Qaisar Mahmood; Ping Zheng; Jing Cai; Donglei Wu; Baolan Hu; Li J

Biotechnology can be used to assess the well being of ecosystems, transform pollutants into benign substances, generate biodegradable materials from renewable sources, and develop environmentally safe manufacturing and disposal processes. Simultaneous elimination of sulfide and nitrite from synthetic wastewaters was investigated using a bioreactor. A laboratory scale anoxic sulfide-oxidizing (ASO) reactor was operated for 135 days to evaluate the potential for volumetric loading rates, effect of hydraulic retention time (HRT) and substrate concentration on the process performance. The maximal sulfide and nitrite removal rates were achieved to be 13.82 and 16.311 kg/(m3 day), respectively, at 0.10 day HRT. The process can endure high sulfide concentrations, as the sulfide removal percentage always remained higher than 88.97% with influent concentration up to 1920 mg/L. Incomplete sulfide oxidation took place due to lower consumed nitrite to sulfide ratios of 0.93. It also tolerated high nitrite concentration up to 2265.25mg/L. The potential achieved by decreasing HRT at fixed substrate concentration is higher than that by increasing substrate concentration at fixed HRT. The process can bear short HRT of 0.10 day but careful operation is needed. Nitrite conversion was more sensitive to HRT than sulfide conversion when HRT was decreased from 1.50 to 0.08 day. Stoichiometric analyses and results of batch experiments show that major part of sulfide (89-90%) was reduced by nitrite while some autooxidation (10-11%) was resulted from presence of small quantities of dissolved oxygen in the influent wastewater. There was ammonia amassing in considerably high amounts in the bioreactor when the influent nitrite concentration reached above 2265.25mg/L. High ammonia concentrations (200-550 mg/L) in the bioreactor contributed towards the overall inhibition of the process. Present biotechnology exhibits practical value with a high potential for simultaneous removal of nitrite and sulfide from concentrated wastewaters at shorter HRT.


Journal of Integrative Plant Biology | 2008

Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii.

Dan Liu; Tingqiang Li; Xiaofen Jin; Xiaoe Yang; Ejazul Islam; Qaisar Mahmood

The phytotoxicity and antioxidative adaptations of lead (Pb) accumulating ecotype (AE) and non-accumulating ecotype (NAE) of Sedum alfredii Hance were investigated under different Pb treatments involving 0, 0.02 mmol/L Pb, 0.1 mmol/L Pb and 0.1 mmol/L Pb/0.1 mmol/L ethylenediaminetetraacetic acid (EDTA) for 6 days. With the increasing Pb level, the Pb concentration in the shoots of AE plants enhanced accordingly, and EDTA supply helped 51% of Pb translocation to shoots of AE compared with those treated with 0.1 mmol/L Pb alone. Moreover, the presence of EDTA alleviated Pb phytotoxicity through changes in plant biomass, root morphology and chlorophyll contents. Lead toxicity induced hydrogen peroxide (H2O2) accumulation and lipid peroxidation in both ecotypes of S. alfredii. The activities of superoxide dismutase (SOD), guaiacol peroxidase (G-POD), ascorbate peroxidase, and dehydroascorbate reductase elevated in both leaves and roots of AE as well as in leaves of NAE with the increasing Pb levels, but SOD and G-POD declined in roots of NAE. Enhancement in glutathione reductase activity was only detected in roots of NAE while a depression in catalase activity was recorded in the leaves of NAE. A significant enhancement in glutathione and ascorbic acid (AsA)levels occurred in both ecotypes exposed to Pb and Pb/EDTA treatment compared with the control, however, the differences between these two treatments were insignificant. The dehydroascorbate (DHA) contents in roots of both ecotypes were 1.41 to 11.22-fold higher than those in leaves, whereas the ratios of AsA to DHA (1.38 to 6.84) in leaves altering more to the reduced AsA form were much higher than those in roots. These results suggested that antioxidative enzymes and antioxidants play an important role in counteracting Pb stress in S. alfredii.


Environmental Toxicology | 2008

Response of antioxidant enzymes, ascorbate and glutathione metabolism towards cadmium in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii H.

Xiaofen Jin; Xiaoe Yang; Qaisar Mahmood; Ejazul Islam; Dan Liu; Hong Li

Hydroponics studies were conducted to investigate the antioxidant adaptations, ascorbate and glutathione metabolism in hyperaccumulating ecotype of Sedum alfredii (HE) exposed to high Cd environment, when compared with its nonhyperaccumulating ecotype (NHE). Exposure to Cd induced a burst of oxidative stress in both ecotypes which was evident by the sharp increase in hydrogen peroxide (H2O2) contents and lipid peroxidation. Buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, did not affect H2O2 concentrations as well as growth of both ecotypes in the absence of Cd. However, compared with Cd application alone, BSO combined with Cd treatment caused a substantial augmentation of H2O2 accumulation accompanied by a reduction in Cd concentrations in roots and leaves of HE at the end of treatment, which may rule out the possibility that GSH biosynthesis may play an important role as a signal of the stress regulation. No efficient and superior enzymatic antioxidant defense mechanisms against Cd‐imposed oxidative stress existed in both NHE and HE, but the essential nonenzymatic components like ascorbic acid (AsA) and GSH played a prominent role in tolerance against Cd. Cadmium stimulated a notable rise in AsA concentration in both ecotypes soon after the application of treatment. A preferential Cd‐stress response in HE was suggested to changes in the GSH pool, where acclimation was marked by increased GSH concentrations.


Journal of Hazardous Materials | 2009

Isolation of Ochrobactrum sp.QZ2 from sulfide and nitrite treatment system

Qaisar Mahmood; Baolan Hu; Jing Cai; Ping Zheng; Muhammad Rashid Azim; Ghulam Jilani; Ejazul Islam

A bacterial strain QZ2 was isolated from sludge of anoxic sulfide-oxidizing (ASO) reactor. Based on 16S rDNA sequence analysis and morphology, the isolate was identified as Ochrobactrum sp. QZ2. The strain was facultative chemolithotroph, able of using sulfide to reduce nitrite anaerobically. It produced either elemental sulfur or sulfate as the product of sulfide oxidation, depending on the initial sulfide and nitrite concentrations. The optimum growth pH and temperature for Ochrobactrum sp. QZ2 were found as 6.5-7.0 and 30 degrees C, respectively. The specific growth rate (micro) was found as 0.06 h(-1) with a doubling time of 19.75h; the growth seemed more sensitive to highly alkaline pH. Ochrobactrum sp. QZ2 catalyzed sulfide oxidation to sulfate was more sensitive to sulfide compared with nitrite as indicated by IC(50) values for sulfide and nitrite utilization implying that isolate was relatively more tolerant to nitrite. The comparison of physiology of Ochrobactrum sp. QZ2 with those of other known sulfide-oxidizing bacteria suggested that the present isolate resembled to Ochrobactrum anthropi in its denitrification ability.


Journal of Plant Nutrition | 2009

Effects of zinc on root morphology and antioxidant adaptations of cadmium-treated Sedum alfredii H.

Xiaofen Jin; Dan Liu; Ejazul Islam; Qaisar Mahmood; Xiaoe Yang; Zhenli He; Peter J. Stoffella

ABSTRACT The study demonstrated S. alfredii is an excellent cadmium (Cd)/zinc (Zn) hyperaccumulator as Cd and Zn concentrations in leaves reached 2,183 and 13,799 mg kg−1 DW, respectively. There was a significant increase in root morphological parameters induced by 50 and 500 μM Zn supplement; however, a sharp decrease in these parameters occurred when treated with 100 μM Cd +1000 μM Zn. The inhibited root dehydrogenase activity in 100 μM Cd treated plants was restored to control levels when supplemented with 500 μM Zn. Moderate Zn supplement did not produce significant changes in (malondialdehyde) MDA concentrations as compared with those treated with Cd alone. Variations of the antioxidative enzymes proved an ineffective role in coping with metal-stress in S. alfredii. Combined Cd and Zn treatment significantly enhanced ascorbic acid (AsA) and glutathione (GSH) contents in leaves of S. alfredii, as compared with those treated with Cd alone. Thus, Zn may rely on the involvement of GSH in detoxification and tolerance.


Journal of Hazardous Materials | 2008

Hydrodynamic characteristics of airlift nitrifying reactor using carrier-induced granular sludge

Ren-Cun Jin; Ping Zheng; Qaisar Mahmood; Lei Zhang

Since nitrification is the rate-limiting step in the biological nitrogen removal from wastewater, many studies have been conducted on the immobilization of nitrifying bacteria. A laboratory-scale investigation was carried out to scrutinize the effectiveness of activated carbon carrier addition for granulation of nitrifying sludge in a continuous-flow airlift bioreactor and to study the hydrodynamics of the reactor with carrier-induced granules. The results showed that the granular sludge began to appear and matured 60 and 108 days, respectively, after addition of carriers, while no granule was observed in the absence of carriers in the control test. The mature granules had a diameter of 0.5-5 mm (1.6 mm in average), settling velocity 22.3-55.8 m h(-1) and specific gravity of 1.086. The relationship between the two important hydrodynamic coefficients, i.e. gas holdup and liquid circulation velocity, and the superficial gas velocity were established by a simple model and were confirmed experimentally. The model also could predict the critical superficial gas velocity for liquid circulation and that for granules circulation, with respective values of 1.017 and 2.662 cm min(-1), accurately.


Journal of Environmental Sciences-china | 2008

Activated sludge-mediated biodegradation of dimethyl phthalate under fermentative conditions.

Wu Dong-lei; Qaisar Mahmood; Lili Wu; Ping Zheng

The biodegradation of dimethyl phthalate (DMP) was investigated under fermentative conditions in this study. The nature of the intermediate compounds and the extent of mineralization were probed using high-pressure liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) methods. The fermentative bacteria were able to biodegrade the DMP under anaerobic conditions, with the biodegradation rate of 0.36 mg DMP/(L x h). The results demonstrated that the DMP degradation under fermentative conditions followed the modified Gompertz model with the correlation coefficient of 0.99. Monomethyl phthalate (MMP) and phthalic acid (PA) were detected as the intermediates of DMP biodegradation. During the experiment, MMP was rapidly produced and removed; however, PA accumulated as the biodegradation was slower throughout the course of the experiment. The COD(Cr) concentration decreased from 245.06 to 72.01 mg/L after the experimental operation of 20 d. The volume of methane produced was 3.65 ml over a period of 20 d and the amount of methane recovered corresponded to 40.2% of the stoichiometric value. The COD(Cr) variation and methane production showed that the DMP could not be completely mineralized under the fermentative conditions, which implied that the fermentative bacteria were not able to biodegrade DMP entirely.


Phytomedicine | 2017

Salvianolic acid A inhibits calpain activation and eNOS uncoupling during focal cerebral ischemia in mice

Qaisar Mahmood; Guang-Fa Wang; Gang Wu; Huan Wang; Chang-Xin Zhou; Hong-Yu Yang; Zhi-Rong Liu; Feng Han; Kui Zhao

BACKGROUND Salvianolic acid A (SAA) is obtained from Chinese herb Salviae Miltiorrhizae Bunge (Labiatae), has been reported to have the protective effects against cardiovascular and neurovascular diseases. HYPOTHESIS The aim of present study was to investigate the relationship between the effectiveness of SAA against neurovascular injury and its effects on calpain activation and endothelial nitric oxide synthase (eNOS) uncoupling. STUDY DESIGN SAA or vehicle was given to C57BL/6 male mice for seven days before the occlusion of middle cerebral artery (MCAO) for 60min. METHODS High-resolution positron emission tomography scanner (micro-PET) was used for small animal imaging to examine glucose metabolism. Rota-rod time and neurological deficit scores were calculated after 24h of reperfusion. The volume of infarction was determined by Nissl-staining. The calpain proteolytic activity and eNOS uncoupling were determined by western blot analysis. RESULTS SAA administration increased glucose metabolism and ameliorated neuronal damage after brain ischemia, paralleled with decreased neurological deficit and volume of infarction. In addition, SAA pretreatment inhibited eNOS uncoupling and calpain proteolytic activity. Furthermore, SAA inhibited peroxynitrite (ONOO-) generation and upregulates AKT, FKHR and ERK phosphorylation. CONCLUSION These findings strongly suggest that SAA elicits a neurovascular protective role through the inhibition of eNOS uncoupling and ONOO- formation. Moreover, SAA attenuates spectrin and calcineurin breakdown and therefore protects the brain against ischemic/reperfusion injury.

Collaboration


Dive into the Qaisar Mahmood's collaboration.

Top Co-Authors

Avatar

Ping Zheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Cai

Zhejiang Gongshang University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge