Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongxia Hou is active.

Publication


Featured researches published by Dongxia Hou.


Cell Research | 2012

Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA

Lin Zhang; Dongxia Hou; Xi Chen; Donghai Li; Lingyun Zhu; Yujing Zhang; Jing Li; Zhen Bian; Xiangying Liang; Xing Cai; Yuan Yin; Cheng Wang; Tianfu Zhang; Dihan Zhu; Dianmu Zhang; Jie Xu; Qun Chen; Yi Ba; Jing Liu; Qiang Wang; Jian-Qun Chen; Jin Wang; Meng Wang; Qipeng Zhang; Junfeng Zhang; Ke Zen; Chen Yu Zhang

Our previous studies have demonstrated that stable microRNAs (miRNAs) in mammalian serum and plasma are actively secreted from tissues and cells and can serve as a novel class of biomarkers for diseases, and act as signaling molecules in intercellular communication. Here, we report the surprising finding that exogenous plant miRNAs are present in the sera and tissues of various animals and that these exogenous plant miRNAs are primarily acquired orally, through food intake. MIR168a is abundant in rice and is one of the most highly enriched exogenous plant miRNAs in the sera of Chinese subjects. Functional studies in vitro and in vivo demonstrated that MIR168a could bind to the human/mouse low-density lipoprotein receptor adapter protein 1 (LDLRAP1) mRNA, inhibit LDLRAP1 expression in liver, and consequently decrease LDL removal from mouse plasma. These findings demonstrate that exogenous plant miRNAs in food can regulate the expression of target genes in mammals.


Cell Research | 2012

Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system

Rui Tang; Limin Li; Dihan Zhu; Dongxia Hou; Ting Cao; Hongwei Gu; Jing Zhang; J. Chen; Chen-Yu Zhang; Ke Zen

MicroRNAs (miRNAs) are endogenous noncoding RNAs (∼22 nt) that regulate target gene expression at the post-transcriptional level in the cytoplasm. Recent discoveries of the presence of miRNAs and miRNA function-required argonaute family proteins in the cell nucleus have prompted us to hypothesize that miRNAs may also have regulatory functions in the cell nucleus. In this study, we demonstrate that mouse miR-709 is predominantly located in the nucleus of various cell types and that its nuclear localization pattern rapidly changes upon apoptotic stimuli. In the cell nucleus, miR-709 directly binds to a 19-nt miR-709 recognition element on pri-miR-15a/16-1 and prevents its processing into pre-miR-15a/16-1, leading to a suppression of miR-15a/16-1 maturation. Furthermore, nuclear miR-709 participates in the regulation of cell apoptosis through the miR-15a/16-1 pathway. In summary, the present study provides the first evidence that one miRNA can control the biogenesis of other miRNAs by directly targeting their primary transcripts in the nucleus.


Cell Research | 2015

Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses

Zhen Zhou; Xihan Li; Jinxiong Liu; Lei Dong; Qun Chen; Jialing Liu; Huihui Kong; Qianyi Zhang; Xian Qi; Dongxia Hou; Lin Zhang; Guoquan Zhang; Yuchen Liu; Yujing Zhang; Jing Li; Jin Wang; Xi Chen; Hua Wang; Junfeng Zhang; Hualan Chen; Ke Zen; Chen-Yu Zhang

Influenza A viruses (IAVs), particularly H1N1, H5N1 and H7N9, pose a substantial threat to public health worldwide. Here, we report that MIR2911, a honeysuckle (HS)-encoded atypical microRNA, directly targets IAVs with a broad spectrum. MIR2911 is highly stable in HS decoction, and continuous drinking or gavage feeding of HS decoction leads to a significant elevation of the MIR2911 level in mouse peripheral blood and lung. Bioinformatics prediction and a luciferase reporter assay showed that MIR2911 could target various IAVs, including H1N1, H5N1 and H7N9. Synthetic MIR2911 significantly inhibited H1N1-encoded PB2 and NS1 protein expression, but did not affect mutants in which the MIR2911-binding nucleotide sequences were altered. Synthetic MIR2911, extracted RNA from HS decoction and HS decoction all significantly inhibited H1N1 viral replication and rescued viral infection-induced mouse weight loss, but did not affect infection with a mutant virus in which the MIR2911-binding nucleotide sequences of PB2 and NS1 were altered. Importantly, the inhibitory effect of HS decoction on viral replication was abolished by an anti-MIR2911 antagomir, indicating that the physiological concentration of MIR2911 in HS decoction could directly and sufficiently suppress H1N1 viral replication. MIR2911 also inhibited H5N1 and H7N9 viral replication in vitro and in vivo. Strikingly, administration of MIR2911 or HS decoction dramatically reduced mouse mortality caused by H5N1 infection. Our results demonstrate that MIR2911 is the first active component identified in Traditional Chinese Medicine to directly target various IAVs and may represent a novel type of natural product that effectively suppresses viral infection.


Journal of Biological Chemistry | 2013

Microvesicle-mediated Transfer of MicroRNA-150 from Monocytes to Endothelial Cells Promotes Angiogenesis

Jing Li; Yujing Zhang; Yuchen Liu; Xin Dai; Wenyang Li; Xing Cai; Yuan Yin; Qiang Wang; Yunxing Xue; Cheng Wang; Dameng Li; Dongxia Hou; Xiaohong Jiang; Junfeng Zhang; Ke Zen; Xi Chen; Chen-Yu Zhang

Background: The mechanism of secreted miRNA promoting angiogenesis is still unclear. Results: Secreted miR-150 from monocyte induce endothelial cell tube formation in vitro and angiogenesis in vivo, and down-regulation of miR-150 inhibits angiogenesis caused by diabetes, cancer, and atherosclerosis. Conclusion: Monocyte-derived miR-150 can induce angiogenesis via targeting endothelial cells. Significance: Our study illustrates the new role of a secreted miRNA in angiogenesis. Recent studies by our group and others show that microRNAs can be actively secreted into the extracellular environment through microvesicles (MVs) and function as secretory signaling molecules that influence the recipient cell phenotypes. Here we investigate the role of monocyte-secreted miR-150 in promoting the capillary tube formation of endothelial cells and in enhancing angiogenesis. In vitro capillary tube formation and in vivo angiogenesis assays showed that monocyte-derived MVs have strong pro-angiogenic activities. By depleting miR-150 from monocytic MVs and increasing miR-150 in MVs derived from cells that normally contain low levels of miR-150, we further demonstrated that the miR-150 content accounted for the pro-angiogenic activity of monocytic MVs in these assays. Using tumor-implanted mice and ob/ob mice as models, we revealed that miR-150 secretion, which is increased for diseases such as cancers and diabetes, significantly promotes angiogenesis. The delivery of anti-miR-150 antisense oligonucleotides into tumor-implanted mice and ob/ob mice via MVs, however, strongly reduced angiogenesis in both types of mice. Our results collectively demonstrate that secretion of miR-150 via MVs can promote angiogenesis in vitro and in vivo, and we also present a novel microRNA-based therapeutic approach for disease treatment.


Cell Research | 2010

Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions.

Zhen Bian; Limin Li; Rui Tang; Dongxia Hou; Xi Chen; Chen-Yu Zhang; Ke Zen

Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions


Cell Research | 2014

Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth.

Yuan Yin; Xing Cai; Xi Chen; Hongwei Liang; Yujing Zhang; Jing Li; Z.G. Wang; Xiulan Chen; Wen Zhang; Seiji Yokoyama; Cheng Wang; Liang Li; Limin Li; Dongxia Hou; Lei Dong; Tao Xu; Takachika Hiroi; Fuquan Yang; Hongbin Ji; Junfeng Zhang; Ke Zen; Chen-Yu Zhang

An increased population of CD4+CD25highFoxp3+ regulatory T cells (Tregs) in the tumor-associated microenvironment plays an important role in cancer immune evasion. However, the underlying mechanism remains unclear. Here we observed an increased secretion of miR-214 in various types of human cancers and mouse tumor models. Tumor-secreted miR-214 was sufficiently delivered into recipient T cells by microvesicles (MVs). In targeted mouse peripheral CD4+ T cells, tumor-derived miR-214 efficiently downregulated phosphatase and tensin homolog (PTEN) and promoted Treg expansion. The miR-214-induced Tregs secreted higher levels of IL-10 and promoted tumor growth in nude mice. Furthermore, in vivo studies indicated that Treg expansion mediated by cancer cell-secreted miR-214 resulted in enhanced immune suppression and tumor implantation/growth in mice. The MV delivery of anti-miR-214 antisense oligonucleotides (ASOs) into mice implanted with tumors blocked Treg expansion and tumor growth. Our study reveals a novel mechanism through which cancer cell actively manipulates immune response via promoting Treg expansion.


Journal of Immunology | 2011

Role of MicroRNA-214–Targeting Phosphatase and Tensin Homolog in Advanced Glycation End Product-Induced Apoptosis Delay in Monocytes

Limin Li; Dongxia Hou; Ya-Lan Guo; Junwei Yang; Yuan Liu; Chen-Yu Zhang; Ke Zen

Advanced glycation end products (AGEs) delay spontaneous apoptosis of monocytes and contribute to the development of inflammatory responses. However, the mechanism by which AGEs affect monocyte apoptosis is unclear. We studied the role of microRNA-214 (miR-214) and its target gene in AGE-induced monocytic apoptosis delay. Using microRNA (miRNA) microarray and stem-loop, quantitative RT-PCR assay, we studied genome-wide miRNA expression in THP-1 cells treated with or without AGEs. Significant upregulation of miR-214 was consistently observed in THP-1 and human monocytes treated with various AGEs, and AGE-induced monocytic miR-214 upregulation was likely through activation of receptor for AGEs. A striking increase in miR-214 was also detected in monocytes from patients with chronic renal failure. Luciferase reporter assay showed that miR-214 specifically binds to the phosphatase and tensin homolog (PTEN) mRNA 3′-untranslated region, implicating PTEN as a target gene of miR-214. PTEN expression is inversely correlated with miR-214 level in monocytes. Compared with normal monocytes, AGE-treated monocytes and monocytes from chronic renal failure patients exhibited lower PTEN levels and delayed apoptosis. Overexpression of pre–miR-214 led to impaired PTEN expression and delayed apoptosis of THP-1 cells, whereas knockdown of miR-214 level largely abolished AGE-induced cell survival. Our findings define a new role for miR-214–targeting PTEN in AGE-induced monocyte survival.


Scientific Reports | 2015

Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse

Yuchen Liu; Dameng Li; Zhengya Liu; Yu Zhou; Danping Chu; Xihan Li; Xiaohong Jiang; Dongxia Hou; Xi Chen; Yuda Chen; Zhanzhao Yang; Ling Jin; Waner Jiang; Chenfei Tian; Geyu Zhou; Ke Zen; Junfeng Zhang; Yujing Zhang; Jing Li; Chen-Yu Zhang

Cell-derived exosomes have been demonstrated to be efficient carriers of small RNAs to neighbouring or distant cells, highlighting the preponderance of exosomes as carriers for gene therapy over other artificial delivery tools. In the present study, we employed modified exosomes expressing the neuron-specific rabies viral glycoprotein (RVG) peptide on the membrane surface to deliver opioid receptor mu (MOR) siRNA into the brain to treat morphine addiction. We found that MOR siRNA could be efficiently packaged into RVG exosomes and was associated with argonaute 2 (AGO2) in exosomes. These exosomes efficiently and specifically delivered MOR siRNA into Neuro2A cells and the mouse brain. Functionally, siRNA-loaded RVG exosomes significantly reduced MOR mRNA and protein levels. Surprisingly, MOR siRNA delivered by the RVG exosomes strongly inhibited morphine relapse via the down-regulation of MOR expression levels. In conclusion, our results demonstrate that targeted RVG exosomes can efficiently transfer siRNA to the central nervous system and mediate the treatment of morphine relapse by down-regulating MOR expression levels. Our study provides a brand new strategy to treat drug relapse and diseases of the central nervous system.


Journal of Biological Chemistry | 2015

miR-193a-3p Functions as a Tumor Suppressor in Lung Cancer by Down-regulating ERBB4

Hongwei Liang; Minghui Liu; Xin Yan; Yong Zhou; Wengong Wang; Xueliang Wang; Zheng Fu; Nan Wang; Suyang Zhang; Yanbo Wang; Ke Zen; Chen-Yu Zhang; Dongxia Hou; Jing Li; Xi Chen

Background: ERBB4 plays an important role in the etiology and progression of lung cancer. Results: miR-193a-3p suppressed proliferation and invasion and promoted apoptosis in lung cancer cells and xenograft mice by negatively regulating ERBB4. Conclusion: miR-193a-3p exerted an anti-tumor effect by negatively regulating ERBB4 in lung cancer. Significance: This study may open new avenues for future lung cancer therapies. ERBB4, one of four ErbB receptor tyrosine kinase family members, plays an important role in the etiology and progression of lung cancer. In this study, we found that the ERBB4 protein levels were consistently up-regulated in lung cancer tissues, whereas the mRNA levels varied randomly, suggesting that a post-transcriptional mechanism was involved in regulating ERBB4 expression. Because microRNAs are powerful post-transcriptional regulators of gene expression, we used bioinformatic analyses to search for microRNAs that can potentially target ERBB4. We identified specific targeting sites for miR-193a-3p in the 3′-UTR of ERBB4. We further identified an inverse correlation between miR-193a-3p levels and ERBB4 protein levels, but not mRNA levels, in lung cancer tissue samples. By overexpressing or knocking down miR-193a-3p in lung cancer cells, we experimentally confirmed that miR-193a-3p directly recognizes the 3′-UTR of the ERBB4 transcript and regulates ERBB4 expression. Furthermore, the biological consequences of the targeting of ERBB4 by miR-193a-3p were examined in vitro via cell proliferation, invasion, and apoptosis assays and in vivo using a mouse xenograft tumor model. We demonstrated that the repression of ERBB4 by miR-193a-3p suppressed proliferation and invasion and promoted apoptosis in lung cancer cells and that miR-193a-3p exerted an anti-tumor effect by negatively regulating ERBB4 in xenograft mice. Taken together, our findings provide the first clues regarding the role of miR-193a-3p as a tumor suppressor in lung cancer through the inhibition of ERBB4 translation.


Journal of Biological Chemistry | 2015

MicroRNA-193a-3p Reduces Intestinal Inflammation in Response to Microbiota via Down-regulation of Colonic PepT1

Xin Dai; Xi Chen; Qun Chen; Lei Shi; Hongwei Liang; Zhen Zhou; Qian Liu; Wenjing Pang; Dongxia Hou; Cheng Wang; Ke Zen; Yaozong Yuan; Chen Yu Zhang; Lu Xia

Background: The involvement of miRNAs in the host mucosal immune response to gut microbes in colitis is still unclear. Results: miR-193a-3p down-regulates PepT1, and intracolonic-delivery of miR-193a-3p ameliorated the severity of colitis. Conclusion: miRNA-193a-3p can target colonic PepT1 and reduce intestinal inflammation. Significance: Our study illustrates the new role of miRNAs in regulating the host immune response to microbes during colitis. Intestinal inflammation is characterized by epithelial disruption, leading to the loss of barrier function, recruitment of immune cells, and host immune responses to gut microbiota. PepT1, a di/tripeptide transporter that uptakes bacterial products, is up-regulated in inflamed colon tissue, which implies its role in bacterium-associated intestinal inflammation. Although microRNA (miRNA)-mediated gene regulation has been found to be involved in various processes of inflammatory bowel disease (IBD), the biological function of miRNAs in the pathogenesis of IBD remains to be explored. In this study we detected miRNA expression patterns in colon tissues during colitis and investigated the mechanism underlying the regulation of colonic PepT1 by miRNAs. We observed an inverse correlation between PepT1 and miR-193a-3p in inflamed colon tissues with active ulcerative colitis, and we further demonstrated that miR-193a-3p reduced PepT1 expression and activity as a target gene and subsequently suppressed the NF-κB pathway. Intracolonic delivery of miR-193a-3p significantly ameliorated dextran sodium sulfate-induced colitis, whereas the overexpression of colonic PepT1 via PepT1 3′-untranslated region mutant lentivirus vector abolished the anti-inflammatory effect of miR-193a-3p. Furthermore, antibiotic treatment eliminated the difference in the dextran sodium sulfate-induced inflammation between the presence and absence of miR-193a-3p. These findings suggest that miR-193a-3p regulation of PepT1 mediates the uptake of bacterial products and is a potent mechanism during the colonic inflammation process. Overall, we believe miR-193a-3p may be a potent regulator of colonic PepT1 for maintaining intestinal homeostasis.

Collaboration


Dive into the Dongxia Hou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge