Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongxue Wang is active.

Publication


Featured researches published by Dongxue Wang.


Plant Physiology | 2014

Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model

Mily Ron; Kaisa Kajala; Germain Pauluzzi; Dongxue Wang; Mauricio A. Reynoso; Kristina Zumstein; Jasmine Garcha; Sonja Winte; Helen Masson; Soichi Inagaki; Fernán Federici; Neelima Sinha; Roger B. Deal; Julia Bailey-Serres; Siobhan M. Brady

Testing tomato gene expression with tagged nuclei and ribosomes and CRISPR/Cas9 genome editing shows conservation of SHORT-ROOT gene function. Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato.


Molecular Cell | 2015

Global Analysis of the RNA-Protein Interaction and RNA Secondary Structure Landscapes of the Arabidopsis Nucleus

Sager J. Gosai; Shawn W. Foley; Dongxue Wang; Ian M. Silverman; Nur Selamoglu; Andrew D. L. Nelson; Mark A. Beilstein; Fevzi Daldal; Roger B. Deal; Brian D. Gregory

Posttranscriptional regulation in eukaryotes requires cis- and trans-acting features and factors including RNA secondary structure and RNA-binding proteins (RBPs). However, a comprehensive view of the structural and RBP interaction landscape of nuclear RNAs has yet to be compiled for any organism. Here, we use our ribonuclease-mediated structure and RBP-binding site mapping approaches to globally profile these features in Arabidopsis seedling nuclei in vivo. We reveal anticorrelated patterns of secondary structure and RBP binding throughout nuclear mRNAs that demarcate sites of alternative splicing and polyadenylation. We also uncover a collection of protein-bound sequence motifs, and identify their structural contexts, co-occurrences in transcripts encoding functionally related proteins, and interactions with putative RBPs. Finally, using these motifs, we find that the chloroplast RBP CP29A also interacts with nuclear mRNAs. In total, we provide a simultaneous view of the RNA secondary structure and RBP interaction landscapes in a eukaryotic nucleus.


Molecular Cell | 2017

Structural Basis for the Versatile and Methylation-Dependent Binding of CTCF to DNA.

Hideharu Hashimoto; Dongxue Wang; John R. Horton; Xing Zhang; Victor G. Corces; Xiaodong Cheng

The multidomain CCCTC-binding factor (CTCF), containing a tandem array of 11 zinc fingers (ZFs), modulates the three-dimensional organization of chromatin. We crystallized the human CTCF DNA-binding domain in complex with a known CTCF-binding site. While ZF2 does not make sequence-specific contacts, each finger of ZF3-7 contacts three bases of the 15-bp consensus sequence. Each conserved nucleotide makes base-specific hydrogen bonds with a particular residue. Most of the variable base pairs within the core sequence also engage in interactions with the protein. These interactions compensate for deviations from the consensus sequence, allowing CTCF to adapt to sequence variations. CTCF is sensitive to cytosine methylation at position 2, but insensitive at position 12 of the 15-bp core sequence. These differences can be rationalized structurally. Although included in crystallizations, ZF10 and ZF11 are not visible, while ZF8 and ZF9 span the backbone of the DNA duplex, conferring no sequence specificity but adding to overall binding stability.


Nucleic Acids Research | 2017

MAX is an epigenetic sensor of 5-carboxylcytosine and is altered in multiple myeloma.

Dongxue Wang; Hideharu Hashimoto; Xing Zhang; Benjamin G. Barwick; Sagar Lonial; Lawrence H. Boise; Paula M. Vertino; Xiaodong Cheng

Abstract The oncogenic transcription factor MYC and its binding partner MAX regulate gene expression by binding to DNA at enhancer-box (E-box) elements 5΄-CACGTG-3΄. In mammalian genomes, the central E-box CpG has the potential to be methylated at the 5-position of cytosine (5mC), or to undergo further oxidation to the 5-hydroxymethyl (5hmC), 5-formyl (5fC), or 5-carboxyl (5caC) forms. We find that MAX exhibits the greatest affinity for a 5caC or unmodified C-containing E-box, and much reduced affinities for the corresponding 5mC, 5hmC or 5fC forms. Crystallization of MAX with a 5caC modified E-box oligonucleotide revealed that MAX Arg36 recognizes 5caC using a 5caC–Arg–Guanine triad, with the next nearest residue to the carboxylate group being Arg60. In an analysis of >800 primary multiple myelomas, MAX alterations occurred at a frequency of ∼3%, more than half of which were single nucleotide substitutions affecting a basic clamp-like interface important for DNA interaction. Among these, arginines 35, 36 and 60 were the most frequently altered. In vitro binding studies showed that whereas mutation of Arg36 (R36W) or Arg35 (R35H/L) completely abolished DNA binding, mutation of Arg60 (R60Q) significantly reduced DNA binding, but retained a preference for the 5caC modified E-box. Interestingly, MAX alterations define a subset of myeloma patients with lower MYC expression and a better overall prognosis. Together these data indicate that MAX can act as a direct epigenetic sensor of E-box cytosine modification states and that local CpG modification and MAX variants converge to modulate the MAX-MYC transcriptional network.


Methods of Molecular Biology | 2015

Epigenome profiling of specific plant cell types using a streamlined INTACT protocol and ChIP-seq.

Dongxue Wang; Roger B. Deal

Plants consist of many functionally specialized cell types, each with its own unique epigenome, transcriptome, and proteome. Characterization of these cell type-specific properties is essential to understanding cell fate specification and the responses of individual cell types to the environment. In this chapter we describe an approach to map chromatin features in specific cell types of Arabidopsis thaliana using nuclei purification from individual cell types with the INTACT method (isolation of nuclei tagged in specific cell types) followed by chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq). The INTACT system employs two transgenes to generate affinity-labeled nuclei in the cell type of interest, and these tagged nuclei can then be selectively purified from tissue homogenates. The primary transgene encodes the nuclear tagging fusion protein (NTF), which consists of a nuclear envelope-targeting domain, the green fluorescent protein, and a biotin ligase recognition peptide, while the second transgene encodes the E. coli biotin ligase (BirA), which selectively biotinylates NTF. Expression of NTF and BirA in a specific cell type thus yields nuclei that are coated with biotin and can be purified by virtue of their affinity for streptavidin-coated magnetic beads. Compared with the original INTACT nuclei purification protocol, the procedure presented here is greatly simplified and shortened. After nuclei purification, we provide detailed instructions for chromatin isolation, shearing, and immunoprecipitation. Finally, we present a low input ChIP-seq library preparation protocol based on the nano-ChIP-seq method of Adli and Bernstein, and we describe multiplex Illumina sequencing of these libraries to produce high quality, cell type-specific epigenome profiles at a relatively low cost. The procedures given here are optimized for Arabidopsis but should be easily adaptable to other plant species.


Plant Science | 2012

Technologies for systems-level analysis of specific cell types in plants.

Dongxue Wang; E. Shannon Mills; Roger B. Deal

The study of biological processes at cell type resolution requires the isolation of the specific cell types from an organism, but this presents a great technical challenge. In recent years a number of methods have been developed that allow deep analyses of the epigenome, transcriptome, and ribosome-associated mRNA populations in individual cell types. The application of these methods has lead to a clearer understanding of important issues in plant biology, including cell fate specification and cell type-specific responses to the environment. In this review, we discuss current mechanical- and affinity-based technologies available for isolation and analysis of individual cell types in a plant. The integration of these methods is proposed as a means of achieving a holistic view of cellular processes at all levels, from chromatin dynamics to metabolomics. Finally, we explore the limitations of current methods and the needs for future technological development.


Nucleic Acids Research | 2017

Methyl-dependent and spatial-specific DNA recognition by the orthologous transcription factors human AP-1 and Epstein-Barr virus Zta

Samuel Hong; Dongxue Wang; John R. Horton; Xing Zhang; Samuel H. Speck; Robert Blumenthal; Xiaodong Cheng

Abstract Activator protein 1 (AP-1) is a transcription factor that recognizes two versions of a 7-base pair response element, either 5΄-TGAGTCA-3΄ or 5΄-MGAGTCA-3΄ (where M = 5-methylcytosine). These two elements share the feature that 5-methylcytosine and thymine both have a methyl group in the same position, 5-carbon of the pyrimidine, so each of them has two methyl groups at nucleotide positions 1 and 5 from the 5΄ end, resulting in four methyl groups symmetrically positioned in duplex DNA. Epstein-Barr Virus Zta is a key transcriptional regulator of the viral lytic cycle that is homologous to AP-1. Zta recognizes several methylated Zta-response elements, including meZRE1 (5΄-TGAGMCA-3΄) and meZRE2 (5΄-TGAGMGA-3΄), where a methylated cytosine occupies one of the inner thymine residues corresponding to the AP-1 element, resulting in the four spatially equivalent methyl groups. Here, we study how AP-1 and Zta recognize these methyl groups within their cognate response elements. These methyl groups are in van der Waals contact with a conserved di-alanine in AP-1 dimer (Ala265 and Ala266 in Jun), or with the corresponding Zta residues Ala185 and Ser186 (via its side chain carbon Cβ atom). Furthermore, the two ZRE elements differ at base pair 6 (C:G versus G:C), forming a pseudo-symmetric sequence (meZRE1) or an asymmetric sequence (meZRE2). In vitro DNA binding assays suggest that Zta has high affinity for all four sequences examined, whereas AP-1 has considerably reduced affinity for the asymmetric sequence (meZRE2). We ascribe this difference to Zta Ser186 (a unique residue for Zta) whose side chain hydroxyl oxygen atom interacts with the two half sites differently, whereas the corresponding Ala266 of AP-1 Jun protein lacks such flexibility. Our analyses demonstrate a novel mechanism of 5mC/T recognition in a methylation-dependent, spatial and sequence-specific approach by basic leucine-zipper transcriptional factors.


Nucleic Acids Research | 2018

Role for first zinc finger of WT1 in DNA sequence specificity: Denys-Drash syndrome-associated WT1 mutant in ZF1 enhances affinity for a subset of WT1 binding sites.

Dongxue Wang; John R. Horton; Yu Zheng; Robert Blumenthal; Xing Zhang; Xiaodong Cheng

Abstract Wilms tumor protein (WT1) is a Cys2-His2 zinc-finger transcription factor vital for embryonic development of the genitourinary system. The protein contains a C-terminal DNA binding domain with four tandem zinc-fingers (ZF1–4). An alternative splicing of Wt1 can add three additional amino acids—lysine (K), threonine (T) and serine (S)—between ZF3 and ZF4. In the −KTS isoform, ZF2–4 determine the sequence-specificity of DNA binding, whereas the function of ZF1 remains elusive. Three X-ray structures are described here for wild-type −KTS isoform ZF1–4 in complex with its cognate DNA sequence. We observed four unique ZF1 conformations. First, like ZF2–4, ZF1 can be positioned continuously in the DNA major groove forming a ‘near-cognate’ complex. Second, while ZF2–4 make base-specific interactions with one DNA molecule, ZF1 can interact with a second DNA molecule (or, presumably, two regions of the same DNA molecule). Third, ZF1 can intercalate at the joint of two tail-to-head DNA molecules. If such intercalation occurs on a continuous DNA molecule, it would kink the DNA at the ZF1 binding site. Fourth, two ZF1 units can dimerize. Furthermore, we examined a Denys–Drash syndrome-associated ZF1 mutation (methionine at position 342 is replaced by arginine). This mutation enhances WT1 affinity for a guanine base. X-ray crystallography of the mutant in complex with its preferred sequence revealed the interactions responsible for this affinity change. These results provide insight into the mechanisms of action of WT1, and clarify the fact that ZF1 plays a role in determining sequence specificity of this critical transcription factor.


Developmental Cell | 2017

A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate

Shawn W. Foley; Sager J. Gosai; Dongxue Wang; Nur Selamoglu; Amelia C. Sollitti; Tino Köster; Alexander Steffen; Eric Lyons; Fevzi Daldal; Benjamin A. Garcia; Dorothee Staiger; Roger B. Deal; Brian D. Gregory


Nucleic Acids Research | 2016

Distinctive Klf4 mutants determine preference for DNA methylation status.

Hideharu Hashimoto; Dongxue Wang; Alyse N. Steves; Peng Jin; Robert Blumenthal; Xing Zhang; Xiaodong Cheng

Collaboration


Dive into the Dongxue Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaodong Cheng

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xing Zhang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian D. Gregory

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Fevzi Daldal

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Helen Masson

University of California

View shared research outputs
Top Co-Authors

Avatar

Jasmine Garcha

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge