Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donna B. Tate is active.

Publication


Featured researches published by Donna B. Tate.


Diabetes Care | 2010

Effects of Acute Hypoglycemia on Inflammatory and Pro-atherothrombotic Biomarkers in Individuals With Type 1 Diabetes and Healthy Individuals

Nino G. Joy; Maka S. Hedrington; Vanessa J. Briscoe; Donna B. Tate; Andrew C. Ertl; Stephen N. Davis

OBJECTIVE Recent large randomized trials have linked adverse cardiovascular and cerebrovascular events with hypoglycemia. However, the integrated physiological and vascular biological mechanisms occurring during hypoglycemia have not been extensively examined. Therefore, the aim of this study was to determine whether 2 h of moderate clamped hypoglycemia could decrease fibrinolytic balance and activate pro-atherothrombotic mechanisms in individuals with type 1 diabetes and healthy individuals. RESEARCH DESIGN AND METHODS Thirty-five healthy volunteers (19 male and 16 female subjects age 32 ± 2 years, BMI 26 ± 2 kg/m2, A1C 5.1 ± 0.1%) and twenty-four with type 1 diabetes (12 male and 12 female subjects age 33 ± 3 years, BMI 24 ± 2 kg/m2, A1C 7.7 ± 0.2%) were studied during either a 2-h hyperinsulinemic (9 pmol · kg−1 · min−1) euglycemic or hypoglycemic (2.9 ± 0.1 mmol/l) clamp or both protocols. Plasma glucose levels were normalized overnight in type 1 diabetic subjects prior to each study. RESULTS Insulin levels were similar (602 ± 44 pmol/l) in all four protocols. Glycemia was equivalent in both euglycemic protocols (5.2 ± 0.1 mmol/l), and the level of hypoglycemia was also equivalent in both type 1 diabetic subjects and healthy control subjects (2.9 ± 0.1 mmol/l). Using repeated ANOVA, it was determined that plasminogen activator inhibitor (PAI-1), vascular cell adhesion molecule (VCAM), intercellular adhesion molecule (ICAM), E-selectin, P-selectin, interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and adiponectin responses were all significantly increased (P < 0.05) during the 2 h of hyperinsulinemic hypoglycemia as compared with euglycemia in healthy control subjects. All measures except PAI-1 were also found to be increased during hypoglycemia compared with euglycemia in type 1 diabetes. CONCLUSIONS In summary, moderate hypoglycemia acutely increases circulating levels of PAI-1, VEGF, vascular adhesion molecules (VCAM, ICAM, E-selectin), IL-6, and markers of platelet activation (P-selectin) in individuals with type 1 diabetes and healthy individuals. We conclude that acute hypoglycemia can result in complex vascular effects including activation of prothrombotic, proinflammatory, and pro-atherogenic mechanisms in individuals with type 1 diabetes and healthy individuals.


Diabetes | 2009

Effects of Intensive Therapy and Antecedent Hypoglycemia on Counterregulatory Responses to Hypoglycemia in Type 2 Diabetes

Stephen N. Davis; Stephanie Mann; Vanessa J. Briscoe; Andrew C. Ertl; Donna B. Tate

OBJECTIVE—The physiology of counterregulatory responses during hypoglycemia in intensively treated type 2 diabetic subjects is largely unknown. Therefore, the specific aims of the study tested the hypothesis that 1) 6 months of intensive therapy to lower A1C <7.0% would blunt autonomic nervous system (ANS) responses to hypoglycemia, and 2) antecedent hypoglycemia will result in counterregulatory failure during subsequent hypoglycemia in patients with suboptimal and good glycemic control. RESEARCH DESIGN AND METHODS—Fifteen type 2 diabetic patients (8 men/7 women) underwent 6-month combination therapy of metformin, glipizide XL, and acarbose to lower A1C to 6.7% and 2-day repeated hypoglycemic clamp studies before and after intensive therapy. A control group of eight nondiabetic subjects participated in a single 2-day repeated hypoglycemic clamp study. RESULTS—Six-month therapy reduced A1C from 10.2 ± 0.5 to 6.7 ± 0.3%. Rates of hypoglycemia increased to 3.2 episodes per patient/month by study end. Hypoglycemia (3.3 ± 0.1 mmol/l) and insulinemia (1,722 ± 198 pmol/l) were similar during all clamp studies. Intensive therapy reduced (P < 0.05) ANS and metabolic counterregulatory responses during hypoglycemia. Antecedent hypoglycemia produced widespread blunting (P < 0.05) of neuroendocrine, ANS, and metabolic counterregulatory responses during subsequent hypoglycemia before and after intensive therapy in type 2 diabetic patients and in nondiabetic control subjects. CONCLUSIONS—Intensive oral combination therapy and antecedent hypoglycemia both blunt physiological defenses against subsequent hypoglycemia in type 2 diabetes. Prior hypoglycemia of only 3.3 ± 0.1 mmol/l can result in counterregulatory failure in type 2 diabetic patients with suboptimal control and can further impair physiological defenses against hypoglycemia in intensively treated type 2 diabetes.


Diabetes | 2015

Effects of Acute and Antecedent Hypoglycemia on Endothelial Function and Markers of Atherothrombotic Balance in Healthy Humans

Nino G. Joy; Donna B. Tate; Lisa M. Younk; Stephen N. Davis

The aim of this study was to determine the effects of single and repeated episodes of clamped hypoglycemia on fibrinolytic balance, proinflammatory biomarkers, proatherothrombotic mechanisms, and endothelial function. Twenty healthy individuals (12 male and 8 female) were studied during separate 2-day randomized protocols. Day 1 consisted of either two 2-h hyperinsulinemic (812 ± 50 pmol/L)-euglycemic (5 ± 0.1 mmol/L) or hyperinsulinemic (812 ± 50 pmol/L)-hypoglycemic (2.9 ± 0.1 mmol/L) clamps. Day 2 consisted of a single 2-h hyperinsulinemic-hypoglycemic clamp. Two-dimensional Doppler ultrasound was used to determine brachial arterial endothelial function. Plasminogen activator inhibitor 1, vascular cell adhesion molecule-1, intracellular adhesion molecule-1, E-selectin, P-selectin, TAT (thrombin/antithrombin complex), tumor necrosis factor-α, and interleukin-6 responses were increased (P < 0.05) during single or repeated hypoglycemia compared with euglycemia. Endogenous and exogenous nitric oxide (NO)-mediated vasodilation were both impaired by repeated hypoglycemia. Neuroendocrine and autonomic nervous system (ANS) responses were also blunted by repeated hypoglycemia (P < 0.05). In summary, acute moderate hypoglycemia impairs fibrinolytic balance; increases proinflammatory responses, platelet activation, and coagulation biomarkers; and reduces NO-mediated endothelial function in healthy individuals. Repeated episodes of hypoglycemia further impair vascular function by additionally reducing exogenously NO-mediated endothelial function and increasing coagulation biomarkers. We conclude that despite reduced neuroendocrine and ANS responses, antecedent hypoglycemia results in greater endothelial dysfunction and an increased proatherothrombotic state compared with a single acute episode of hypoglycemia.


Applied Physiology, Nutrition, and Metabolism | 2007

Type 1 diabetes: exercise and hypoglycemia

Vanessa J. Briscoe; Donna B. Tate; Stephen N. Davis

The Diabetes Control and Complications Trial demonstrated that tight control of diabetes management greatly reduces the risk of microvascular complications of diabetes. Unfortunately, tight control of blood glucose can also result in hypoglycemia, especially in patients with type 1 diabetes mellitus (T1DM). It is now widely recognized that antecedent hypoglycemia can blunt neuroendocrine, autonomic nervous system (ANS), and metabolic counterregulatory responses to subsequent hypoglycemia. Thus, blunted counterregulatory defenses against falling plasma glucose levels are a major risk factor for hypoglycemia in people with diabetes. This risk is also complicated by a difference in responses between males and females. Because of the qualitative similarity of neuroendocrine, ANS, and metabolic responses to hypoglycemia and exercise, we developed studies to determine whether neuroendocrine and ANS counterregulatory dysfunction play a role in the pathogenesis of exercise-related hypoglycemia in T1DM. Results from these studies have shown that neuroendocrine (catecholamine and glucagon), ANS (muscle sympathetic nerve activity), and metabolic (lipolysis and glucose kinetics) responses are blunted during exercise after antecedent hypoglycemia, and that there is a sexual dimorphism in responses. Similarly, antecedent episodes of exercise can blunt counterregulatory responses during subsequent hypoglycemia, thereby creating reciprocal feed-forward vicious cycles that increase the risk of hypoglycemia during either stress.


Diabetes | 2008

Effects of a Selective Serotonin Reuptake Inhibitor, Fluoxetine, on Counterregulatory Responses to Hypoglycemia in Healthy Individuals

Vanessa J. Briscoe; Andrew C. Ertl; Donna B. Tate; Sheila Dawling; Stephen N. Davis

OBJECTIVE—Hypoglycemia commonly occurs in intensively-treated diabetic patients. Repeated hypoglycemia blunts counterregulatory responses, thereby increasing the risk for further hypoglycemic events. Currently, physiologic approaches to augment counterregulatory responses to hypoglycemia have not been established. Therefore, the specific aim of this study was to test the hypothesis that 6 weeks’ administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine would amplify autonomic nervous system (ANS) and neuroendocrine counterregulatory mechanisms during hypoglycemia. RESEARCH DESIGN AND METHODS—A total of 20 healthy (10 male and 10 female) subjects participated in an initial single-step hyperinsulinemic (9 pmol · kg−1 · min−1)-hypoglycemic (means ± SE 2.9 ± 0.1 mmol/l) clamp study and were then randomized to receive 6 weeks’ administration of fluoxetine (n = 14) or identical placebo (n = 6) in a double-blind fashion. After 6 weeks, subjects returned for a second hypoglycemic clamp. Glucose kinetics were determined by three-tritiated glucose, and muscle sympathetic nerve activity (MSNA) was measured by microneurography. RESULTS—Despite identical hypoglycemia (2.9 ± 0.1 mmol/l) and insulinemia during all clamp studies, key ANS (epinephrine, norepinephrine, and MSNA but not symptoms), neuroendocrine (cortisol), and metabolic (endogenous glucose production, glycogenolysis, and lipolysis) responses were increased (P < 0.01) following fluoxetine. CONCLUSIONS—This study demonstrated that 6 weeks’ administration of the SSRI fluoxetine can amplify a wide spectrum of ANS and metabolic counterregulatory responses during hypoglycemia in healthy individuals. These data further suggest that serotonergic transmission may be an important mechanism in modulating sympathetic nervous system drive during hypoglycemia in healthy individuals.


Expert Review of Endocrinology & Metabolism | 2011

Exercise-related hypoglycemia in diabetes mellitus

Lisa M. Younk; Maia Mikeladze; Donna B. Tate; Stephen N. Davis

Current recommendations are that people with Type 1 and Type 2 diabetes mellitus exercise regularly. However, in cases in which insulin or insulin secretagogues are used to manage diabetes, patients have an increased risk of developing hypoglycemia, which is amplified during and after exercise. Repeated episodes of hypoglycemia blunt autonomic nervous system, neuroendocrine and metabolic defenses (counter-regulatory responses) against subsequent episodes of falling blood glucose levels during exercise. Likewise, antecedent exercise blunts counter-regulatory responses to subsequent hypoglycemia. This can lead to a vicious cycle, by which each episode of either exercise or hypoglycemia further blunts counter-regulatory responses. Although contemporary insulin therapies cannot fully mimic physiologic changes in insulin secretion, people with diabetes have several management options to avoid hypoglycemia during and after exercise, including regularly monitoring blood glucose, reducing basal and/or bolus insulin, and consuming supplemental carbohydrates.


Diabetes | 2008

Effects of the Selective Serotonin Reuptake Inhibitor Fluoxetine on Counterregulatory Responses to Hypoglycemia in Individuals With Type 1 Diabetes

Vanessa J. Briscoe; Andrew C. Ertl; Donna B. Tate; Stephen N. Davis

OBJECTIVE—Previous work has demonstrated that chronic administration of the serotonin reuptake inhibitor (SSRI) fluoxetine augments counterregulatory responses to hypoglycemia in healthy humans. However, virtually no information exists regarding the effects of fluoxetine on integrated physiological counterregulatory responses during hypoglycemia in type 1 diabetes. Therefore, the specific aim of this study was to test the hypothesis that 6-week use of the SSRI fluoxetine would amplify autonomic nervous system (ANS) counterregulatory responses to hypoglycemia in individuals with type 1 diabetes. RESEARCH DESIGN AND METHODS—Eighteen type 1 diabetic patients (14 men/4 women aged 19–48 years with BMI 25 ± 3 kg/m2 and A1C 7.0 ± 0.4%) participated in randomized, double-blind 2-h hyperinsulinemic (9 pmol · kg−1 · min−1)-hypoglycemic clamp studies before and after 6 weeks of fluoxetine administration (n = 8) or identical placebo (n = 10). Glucose kinetics was determined by 3-tritiated glucose. Muscle sympathetic nerve activity (MSNA) was determined by microneurography. RESULTS—Hypoglycemia (2.8 ± 0.1 mmol/l) and insulinemia (646 ± 52 pmol/l) were similar during all clamp studies. ANS, neuroendocrine, and metabolic counterregulatory responses remained unchanged in the placebo group. However, fluoxetine administration significantly (P < 0.05) increased key ANS (epinephrine, norepinephrine, and MSNA), metabolic (endogenous glucose production and lipolysis), and cardiovascular (systolic blood pressure) counterregulatory responses during hypoglycemia. CONCLUSIONS—This study has demonstrated that 6-week administration of the SSRI fluoxetine can amplify ANS and metabolic counterregulatory mechanisms during moderate hypoglycemia in patients with type 1 diabetes. These data also suggest that the use of fluoxetine may be useful in increasing epinephrine responses during hypoglycemia in clinical practice.


Diabetes Care | 2010

Dose Response Effects of Insulin Glargine in Type 2 Diabetes

Zhihui Wang; Maka S. Hedrington; Nino G. Joy; Vanessa J. Briscoe; M. Antoinette Richardson; Lisa M. Younk; Wendell Nicholson; Donna B. Tate; Stephen N. Davis

OBJECTIVE To determine the pharmacokinetic and pharmacodynamic dose-response effects of insulin glargine administered subcutaneously in individuals with type 2 diabetes. RESEARCH DESIGN AND METHODS Twenty obese type 2 diabetic individuals (10 male and 10 female, aged 50 ± 3 years, with BMI 36 ± 2 kg/m2 and A1C 8.3 ± 0.6%) were studied in this single-center, placebo-controlled, randomized, double-blind study. Five subcutaneous doses of insulin glargine (0, 0.5, 1.0, 1.5, and 2.0 units/kg) were investigated on separate occasions using the 24-h euglycemic clamp technique. RESULTS Glargine duration of action to reduce glucose, nonessential fatty acid (NEFA), and β-hydroxybutyrate levels was close to or >24 h for all four doses. Increases in glucose flux revealed no discernible peak and were modest with maximal glucose infusion rates of 9.4, 6.6, 5.5, and 2.8 μmol/kg/min for the 2.0, 1.5, 1.0, and 0.5 units/kg doses, respectively. Glargine exhibited a relatively hepatospecific action with greater suppression (P < 0.05) of endogenous glucose production (EGP) compared with little or no increases in glucose disposal. CONCLUSION A single subcutaneous injection of glargine at a dose of ≥0.5 units/kg can acutely reduce glucose, NEFA, and ketone body levels for 24 h in obese insulin-resistant type 2 diabetic individuals. Glargine lowers blood glucose by mainly inhibiting EGP with limited effects on stimulating glucose disposal. Large doses of glargine have minimal effects on glucose flux and retain a relatively hepatospecific action in type 2 diabetes.


American Journal of Physiology-endocrinology and Metabolism | 2015

Acute effects of hyperinsulinemia and hyperglycemia on vascular inflammatory biomarkers and endothelial function in overweight and obese humans

Jennifer M. Perkins; Nino G. Joy; Donna B. Tate; Stephen N. Davis

We investigated the separate and combined effects of hyperglycemia and hyperinsulinemia on markers of endothelial function, proinflammatory and proatherothrombotic responses in overweight/obese nondiabetic humans. Twenty-two individuals (13 F/9 M, BMI 30.1 ± 4.1 kg/m(2)) were studied during four randomized, single-blind protocols. The pancreatic clamp technique was combined with 4-h glucose clamps consisting of either 1) euinsulinemia-euglycemia, 2) euinsulinemia-hyperglycemia, 3) hyperinsulinemia-hyperglycemia, or 4) hyperinsulinemia-euglycemia. Insulin levels were higher (998 ± 66 vs. 194 ± 22 pmol/l) during hyperinsulinemia compared with euinsulinemia. Glucose levels were 11.1 mmol/l during hyperinsulinemia compared with 5.1 ± 0.1 mmol/l during euglycemia. VCAM, ICAM, P-selectin, E-selectin, IL-6, adiponectin, and PAI-1 responses were all increased (P < 0.01-0.0001), and endothelial function was decreased (P < 0.0005) during euinsulinemia-hyperglycemia compared with other protocols. Hyperinsulinemia in the presence of hyperglycemia prevented the increase in proinflammatory and proatherothrombotic markers while also normalizing vascular endothelial function. We conclude that 4 h of moderate hyperglycemia can result in increases of proinflammatory markers (ICAM, VCAM, IL-6, E-selectin), platelet activation (P-selectin), reduced fibrinolytic balance (increased PAI-1), and disordered endothelial function in a group of obese and overweight individuals. Hyperinsulinemia prevents the actions of moderate hyperglycemia to reduce endothelial function and increase proinflammatory and proatherothrombotic markers.


Diabetes | 2010

Effects of antecedent GABAA activation with alprazolam on counterregulatory responses to hypoglycemia in healthy humans.

Maka S. Hedrington; Stephnie Farmerie; Andrew C. Ertl; Zhihui Wang; Donna B. Tate; Stephen N. Davis

OBJECTIVE To date, there are no data investigating the effects of GABAA activation on counterregulatory responses during repeated hypoglycemia in humans. The aim of this study was to determine the effects of prior GABAA activation using the benzodiazepine alprazolam on the neuroendocrine and autonomic nervous system (ANS) and metabolic counterregulatory responses during next-day hypoglycemia in healthy humans. RESEARCH DESIGN AND METHODS Twenty-eight healthy individuals (14 male and 14 female, age 27 ± 6 years, BMI 24 ± 3 kg/m2, and A1C 5.2 ± 0.1%) participated in four randomized, double-blind, 2-day studies. Day 1 consisted of either morning and afternoon 2-h hyperinsulinemic euglycemia or 2-h hyperinsulinemic hypoglycemia (2.9 mmol/l) with either 1 mg alprazolam or placebo administered 30 min before the start of each clamp. Day 2 consisted of a single-step hyperinsulinemic-hypoglycemic clamp of 2.9 mmol/l. RESULTS Despite similar hypoglycemia (2.9 ± 1 mmol/l) and insulinemia (672 ± 108 pmol/l) during day 2 studies, GABAA activation with alprazolam during day 1 euglycemia resulted in significant blunting (P < 0.05) of ANS (epinephrine, norepinephrine, muscle sympathetic nerve activity, and pancreatic polypeptide), neuroendocrine (glucagon and growth hormone), and metabolic (glucose kinetics, lipolysis, and glycogenolysis) counterregulatory responses. GABAA activation with alprazolam during prior hypoglycemia caused further significant (P < 0.05) decrements in subsequent glucagon, growth hormone, pancreatic polypeptide, and muscle sympathetic nerve activity counterregulatory responses. CONCLUSIONS Alprazolam activation of GABAA pathways during day 1 hypoglycemia can play an important role in regulating a spectrum of key physiologic responses during subsequent (day 2) hypoglycemia in healthy man.

Collaboration


Dive into the Donna B. Tate's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nino G. Joy

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge