Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew C. Ertl is active.

Publication


Featured researches published by Andrew C. Ertl.


Medicine and Science in Sports and Exercise | 1983

Estimation of energy expenditure by a portable accelerometer

Henry J. Montoye; Richard A. Washburn; Stephen Servais; Andrew C. Ertl; John G. Webster; F. J. Nagle

A small portable accelerometer was developed to estimate the energy expenditure of daily activities. The accelerometer is reported to be an improvement over movement counters currently on the market. The oxygen requirement of 14 different activities was measured in 21 subjects while each wore the accelerometer on the waist. A movement counter (mercury switch), which is available commercially, was also worn on the waist and another was worn on the left wrist. The reproducibility of the accelerometer readings was high (4 subjects, 14 activities; r = 0.94) and was superior to either the waist movement counter (r = 0.63) or the wrist movement counter (r = 0.74). In estimating oxygen requirement (VO2) the standard error of estimate, based on 21 subjects and 14 activities, was 6.6 ml X min-1 X kg-1 for the accelerometer. This was also better (smaller) than for the waist movement counter (9.2 ml X min-1 X kg-1) or for the wrist movement counter (7.9 ml X min-1 X kg-1).


The Journal of Physiology | 2002

Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight

Benjamin D. Levine; James A. Pawelczyk; Andrew C. Ertl; James F. Cox; Julie H. Zuckerman; André Diedrich; Italo Biaggioni; Chester A. Ray; Michael L. Smith; Satoshi Iwase; Mitsuru Saito; Yoshiki Sugiyama; Tadaaki Mano; Rong Zhang; Ken-ichi Iwasaki; Lynda D. Lane; Jay C. Buckey; William H. Cooke; Friedhelm J. Baisch; David Robertson; C. Gunnar Blomqvist

Orthostatic intolerance is common when astronauts return to Earth: after brief spaceflight, up to two‐thirds are unable to remain standing for 10 min. Previous research suggests that susceptible individuals are unable to increase their systemic vascular resistance and plasma noradrenaline concentrations above pre‐flight upright levels. In this study, we tested the hypothesis that adaptation to the microgravity of space impairs sympathetic neural responses to upright posture on Earth. We studied six astronauts ∼72 and 23 days before and on landing day after the 16 day Neurolab space shuttle mission. We measured heart rate, arterial pressure and cardiac output, and calculated stroke volume and total peripheral resistance, during supine rest and 10 min of 60 deg upright tilt. Muscle sympathetic nerve activity was recorded in five subjects, as a direct measure of sympathetic nervous system responses. As in previous studies, mean (±s.e.m.) stroke volume was lower (46 ± 5 vs. 76 ± 3 ml, P= 0.017) and heart rate was higher (93 ± 1 vs. 74 ± 4 beats min−1, P= 0.002) during tilt after spaceflight than before spaceflight. Total peripheral resistance during tilt post flight was higher in some, but not all astronauts (1674 ± 256 vs. 1372 ± 62 dynes s cm−5, P= 0.32). No crew member exhibited orthostatic hypotension or presyncopal symptoms during the 10 min of postflight tilting. Muscle sympathetic nerve activity was higher post flight in all subjects, in supine (27 ± 4 vs. 17 ± 2 bursts min−1, P= 0.04) and tilted (46 ± 4 vs. 38 ± 3 bursts min−1, P= 0.01) positions. A strong (r2= 0.91–1.00) linear correlation between left ventricular stroke volume and muscle sympathetic nerve activity suggested that sympathetic responses were appropriate for the haemodynamic challenge of upright tilt and were unaffected by spaceflight. We conclude that after 16 days of spaceflight, muscle sympathetic nerve responses to upright tilt are normal.


The American Journal of Medicine | 1997

Hypovolemia in Syncope and Orthostatic Intolerance Role of the Renin-Angiotensin System

Giris Jacob; David Robertson; Rogelio Mosqueda-Garcia; Andrew C. Ertl; Rose Marie Robertson; Italo Biaggioni

PURPOSE Orthostatic intolerance is the cause of significant disability in otherwise normal patients. Orthostatic tachycardia is usually the dominant hemodynamic abnormality, but symptoms may include dizziness, visual changes, discomfort in the head or neck, poor concentration, fatigue, palpitations, tremulousness, anxiety and, in some cases, syncope. It is the most common disorder of blood pressure regulation after essential hypertension. There is a predilection for younger rather than older adults and for women more than men. Its cause is unknown; partial sympathetic denervation or hypovolemia has been proposed. METHODS AND MATERIALS We tested the hypothesis that reduced plasma renin activity, perhaps from defects in sympathetic innervation of the kidney, could underlie a hypovolemia, giving rise to these clinical symptoms. Sixteen patients (14 female, 2 male) ranging in age from 16 to 44 years were studied. Patients were enrolled in the study if they had orthostatic intolerance, together with a raised upright plasma norepinephrine (> or = 600 pg/mL). Patients underwent a battery of autonomic tests and biochemical determinations. RESULTS There was a strong positive correlation between the blood volume and plasma renin activity (r = 0.84, P = 0.001). The tachycardic response to upright posture correlated with the severity of the hypovolemia. There was also a correlation between the plasma renin activity measured in these patients and their concomitant plasma aldosterone level. CONCLUSIONS Hypovolemia occurs commonly in orthostatic intolerance. It is accompanied by an inappropriately low level of plasma renin activity. The degree of abnormality of blood volume correlates closely with the degree of abnormality in plasma renin activity. Taken together, these observations suggest that reduced plasma renin activity may be an important pathophysiologic component of the syndrome of orthostatic intolerance.


Hypertension | 2007

Autonomic Contribution to Blood Pressure and Metabolism in Obesity

Cyndya Shibao; Alfredo Gamboa; André Diedrich; Andrew C. Ertl; Kong Y. Chen; Daniel W. Byrne; Ginnie Farley; Sachin Y. Paranjape; Stephen N. Davis; Italo Biaggioni

Obesity is associated with alterations in the autonomic nervous system that may contribute to the increase in blood pressure and resting energy expenditure present in this condition. To test this hypothesis, we induced autonomic withdrawal with the ganglionic blocker trimethaphan in 10 lean (32±3 years) and 10 obese (35±3 years) subjects. Systolic blood pressure fell more in obese compared with lean subjects (−17±3 versus −11±1 mm Hg; P=0.019) because of a greater decrease in total peripheral resistance (−310±41 versus 33±78 dynes/sec/cm−5; P=0.002). In contrast, resting energy expenditure decreased less in obese than in lean subjects, (−26±21 versus −86±15 kcal per day adjusted by fat-free mass; P=0.035). We confirmed that the autonomic contribution to blood pressure was greater in obesity after including additional subjects with a wider range of blood pressures. Systolic blood pressure decreased −28±4 mm Hg (95% CI: −38 to −18.0; n=8) in obese hypertensive subjects compared with lean (−9±1 mm Hg; 95% CI: −11 to −6; n=22) or obese normotensive subjects (−14±2 mm Hg; 95% CI: −18 to −10; n=20). After removal of autonomic influences, systolic blood pressure remained higher in obese hypertensive subjects (109±3 versus 98±2 mm Hg in lean and 103±2 mm Hg in obese normotensive subjects; P=0.004) suggesting a role for additional factors in obesity-associated hypertension. In conclusion, sympathetic activation induced by obesity is an important determinant to the blood pressure elevation associated with this condition but is not effective in increasing resting energy expenditure. These results suggest that the sympathetic nervous system could be targeted in the treatment of obesity-associated hypertension.


Diabetes Care | 2010

Effects of Acute Hypoglycemia on Inflammatory and Pro-atherothrombotic Biomarkers in Individuals With Type 1 Diabetes and Healthy Individuals

Nino G. Joy; Maka S. Hedrington; Vanessa J. Briscoe; Donna B. Tate; Andrew C. Ertl; Stephen N. Davis

OBJECTIVE Recent large randomized trials have linked adverse cardiovascular and cerebrovascular events with hypoglycemia. However, the integrated physiological and vascular biological mechanisms occurring during hypoglycemia have not been extensively examined. Therefore, the aim of this study was to determine whether 2 h of moderate clamped hypoglycemia could decrease fibrinolytic balance and activate pro-atherothrombotic mechanisms in individuals with type 1 diabetes and healthy individuals. RESEARCH DESIGN AND METHODS Thirty-five healthy volunteers (19 male and 16 female subjects age 32 ± 2 years, BMI 26 ± 2 kg/m2, A1C 5.1 ± 0.1%) and twenty-four with type 1 diabetes (12 male and 12 female subjects age 33 ± 3 years, BMI 24 ± 2 kg/m2, A1C 7.7 ± 0.2%) were studied during either a 2-h hyperinsulinemic (9 pmol · kg−1 · min−1) euglycemic or hypoglycemic (2.9 ± 0.1 mmol/l) clamp or both protocols. Plasma glucose levels were normalized overnight in type 1 diabetic subjects prior to each study. RESULTS Insulin levels were similar (602 ± 44 pmol/l) in all four protocols. Glycemia was equivalent in both euglycemic protocols (5.2 ± 0.1 mmol/l), and the level of hypoglycemia was also equivalent in both type 1 diabetic subjects and healthy control subjects (2.9 ± 0.1 mmol/l). Using repeated ANOVA, it was determined that plasminogen activator inhibitor (PAI-1), vascular cell adhesion molecule (VCAM), intercellular adhesion molecule (ICAM), E-selectin, P-selectin, interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and adiponectin responses were all significantly increased (P < 0.05) during the 2 h of hyperinsulinemic hypoglycemia as compared with euglycemia in healthy control subjects. All measures except PAI-1 were also found to be increased during hypoglycemia compared with euglycemia in type 1 diabetes. CONCLUSIONS In summary, moderate hypoglycemia acutely increases circulating levels of PAI-1, VEGF, vascular adhesion molecules (VCAM, ICAM, E-selectin), IL-6, and markers of platelet activation (P-selectin) in individuals with type 1 diabetes and healthy individuals. We conclude that acute hypoglycemia can result in complex vascular effects including activation of prothrombotic, proinflammatory, and pro-atherogenic mechanisms in individuals with type 1 diabetes and healthy individuals.


IEEE Transactions on Biomedical Engineering | 2003

Analysis of raw microneurographic recordings based on wavelet de-noising technique and classification algorithm: wavelet analysis in microneurography

André Diedrich; Warakorn Charoensuk; Robert J. Brychta; Andrew C. Ertl; Richard Shiavi

We propose a new technique for analyzing the raw neurogram which enables the study of the discharge behavior of individual and group neurons. It utilizes an ideal bandpass filter, a modified wavelet de-noising procedure, an action potential detector, and a waveform classifier. We validated our approach with both simulated data generated from muscle sympathetic neurograms sampled at high rates in five healthy subjects and data recorded from seven healthy subjects during lower body negative pressure suction. The modified wavelet method was superior to the classical discriminator method and the regular wavelet de-noising procedure when applied to simulated neuronal signals. The detected spike rate and spike amplitude rate of the action potentials correlated strongly with number of bursts detected in the integrated neurogram (r = 0.79 and 0.89, respectively, p < 0.001). Eight major action potential waveform classes were found to describe more than 81% of all detected action potentials in all subjects. One class had characteristics similar in shape and in average discharge frequency (27.4/spl plusmn/5.1 spikes/min during resting supine position) to those of reported single vasoconstrictor units. The newly proposed technique allows a precise estimate of sympathetic nerve activity and characterization of individual action potentials in multiunit records.


The Journal of Physiology | 2002

Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space

Andrew C. Ertl; André Diedrich; Italo Biaggioni; Benjamin D. Levine; Rose Marie Robertson; James F. Cox; Julie H. Zuckerman; James A. Pawelczyk; Chester A. Ray; Jay C. Buckey; Lynda D. Lane; Richard Shiavi; F. Andrew Gaffney; Fernando Costa; Carol Holt; C. Gunnar Blomqvist; Friedhelm J. Baisch; David Robertson

Astronauts returning from space have reduced red blood cell masses, hypovolaemia and orthostatic intolerance, marked by greater cardio–acceleration during standing than before spaceflight, and in some, orthostatic hypotension and presyncope. Adaptation of the sympathetic nervous system occurring during spaceflight may be responsible for these postflight alterations. We tested the hypotheses that exposure to microgravity reduces sympathetic neural outflow and impairs sympathetic neural responses to orthostatic stress. We measured heart rate, photoplethysmographic finger arterial pressure, peroneal nerve muscle sympathetic activity and plasma noradrenaline spillover and clearance, in male astronauts before, during (flight day 12 or 13) and after the 16 day Neurolab space shuttle mission. Measurements were made during supine rest and orthostatic stress, as simulated on Earth and in space by 7 min periods of 15 and 30 mmHg lower body suction. Mean (±s.e.m.) heart rates before lower body suction were similar pre–flight and in flight. Heart rate responses to −30 mmHg were greater in flight (from 56 ± 4 to 72 ± 4 beats min−1) than pre–flight (from 56 ± 4 at rest to 62 ± 4 beats min−1, P < 0.05). Noradrenaline spillover and clearance were increased from pre–flight levels during baseline periods and during lower body suction, both in flight (n= 3) and on post–flight days 1 or 2 (n= 5, P < 0.05). In–flight baseline sympathetic nerve activity was increased above pre–flight levels (by 10–33 %) in the same three subjects in whom noradrenaline spillover and clearance were increased. The sympathetic response to 30 mmHg lower body suction was at pre–flight levels or higher in each subject (35 pre–flight vs. 40 bursts min−1 in flight). No astronaut experienced presyncope during lower body suction in space (or during upright tilt following the Neurolab mission). We conclude that in space, baseline sympathetic neural outflow is increased moderately and sympathetic responses to lower body suction are exaggerated. Therefore, notwithstanding hypovolaemia, astronauts respond normally to simulated orthostatic stress and are able to maintain their arterial pressures at normal levels.


The Journal of Physiology | 2002

Cardiovascular and sympathetic neural responses to handgrip and cold pressor stimuli in humans before, during and after spaceflight

Qi Fu; Benjamin D. Levine; James A. Pawelczyk; Andrew C. Ertl; André Diedrich; James F. Cox; Julie H. Zuckerman; Chester A. Ray; Michael L. Smith; Satoshi Iwase; Mitsuru Saito; Yoshiki Sugiyama; Tadaaki Mano; Rong Zhang; Ken-ichi Iwasaki; Lynda D. Lane; Jay C. Buckey; William H. Cooke; Rose Marie Robertson; Friedhelm J. Baisch; C. Gunnar Blomqvist; David Robertson; Italo Biaggioni

Astronauts returning to Earth have reduced orthostatic tolerance and exercise capacity. Alterations in autonomic nervous system and neuromuscular function after spaceflight might contribute to this problem. In this study, we tested the hypothesis that exposure to microgravity impairs autonomic neural control of sympathetic outflow in response to peripheral afferent stimulation produced by handgrip and a cold pressor test in humans. We studied five astronauts ≈72 and 23 days before, and on landing day after the 16 day Neurolab (STS‐90) space shuttle mission, and four of the astronauts during flight (day 12 or 13). Heart rate, arterial pressure and peroneal muscle sympathetic nerve activity (MSNA) were recorded before and during static handgrip sustained to fatigue at 40 % of maximum voluntary contraction, followed by 2 min of circulatory arrest pre‐, in‐ and post‐flight. The cold pressor test was applied only before (five astronauts) and during flight (day 12 or 13, four astronauts). Mean (±s.e.m.) baseline heart rates and arterial pressures were similar among pre‐, in‐ and post‐flight measurements. At the same relative fatiguing force, the peak systolic pressure and mean arterial pressure during static handgrip were not different before, during and after spaceflight. The peak diastolic pressure tended to be higher post‐ than pre‐flight (112 ± 6 vs. 99 ± 5 mmHg, P= 0.088). Contraction‐induced rises in heart rate were similar pre‐, in‐ and post‐flight. MSNA was higher post‐flight in all subjects before static handgrip (26 ± 4 post‐ vs. 15 ± 4 bursts min−1 pre‐flight, P= 0.017). Contraction‐evoked peak MSNA responses were not different before, during, and after spaceflight (41 ± 4, 38 ± 5 and 46 ± 6 bursts min−1, all P > 0.05). MSNA during post‐handgrip circulatory arrest was higher post‐ than pre‐ or in‐flight (41 ± 1 vs. 33 ± 3 and 30 ± 5 bursts min−1, P= 0.038 and 0.036). Similarly, responses of MSNA and blood pressure to the cold pressor test were well maintained in‐flight. We conclude that modulation of muscle sympathetic neural outflow by muscle metaboreceptors and skin nociceptors is preserved during short duration spaceflight.


The Journal of Physiology | 2002

Influence of microgravity on astronauts' sympathetic and vagal responses to Valsalva's manoeuvre

James F. Cox; Kari U. O. Tahvanainen; Tom Kuusela; Benjamin D. Levine; William H. Cooke; Tadaaki Mano; Satoshi Iwase; Mitsuru Saito; Yoshiki Sugiyama; Andrew C. Ertl; Italo Biaggioni; André Diedrich; Rose Marie Robertson; Julie H. Zuckerman; Lynda D. Lane; Chester A. Ray; Ronald J. White; James A. Pawelczyk; Jay C. Buckey; Friedhelm J. Baisch; C. Gunnar Bomqvist; David Robertson

When astronauts return to Earth and stand, their heart rates may speed inordinately, their blood pressures may fall, and some may experience frank syncope. We studied brief autonomic and haemodynamic transients provoked by graded Valsalva manoeuvres in astronauts on Earth and in space, and tested the hypothesis that exposure to microgravity impairs sympathetic as well as vagal baroreflex responses. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in four healthy male astronauts (aged 38–44 years) before, during and after the 16 day Neurolab space shuttle mission. Astronauts performed two 15 s Valsalva manoeuvres at each pressure, 15 and 30 mmHg, in random order. Although no astronaut experienced presyncope after the mission, microgravity provoked major changes. For example, the average systolic pressure reduction during 30 mmHg straining was 27 mmHg pre‐flight and 49 mmHg in flight. Increases in muscle sympathetic nerve activity during straining were also much greater in space than on Earth. For example, mean normalized sympathetic activity increased 445 % during 30 mmHg straining on earth and 792 % in space. However, sympathetic baroreflex gain, taken as the integrated sympathetic response divided by the maximum diastolic pressure reduction during straining, was the same in space and on Earth. In contrast, vagal baroreflex gain, particularly during arterial pressure reductions, was diminished in space. This and earlier research suggest that exposure of healthy humans to microgravity augments arterial pressure and sympathetic responses to Valsalva straining and differentially reduces vagal, but not sympathetic baroreflex gain.


The Journal of Physiology | 2007

Human cerebral autoregulation before, during and after spaceflight

Ken-ichi Iwasaki; Benjamin D. Levine; Rong Zhang; Julie H. Zuckerman; James A. Pawelczyk; André Diedrich; Andrew C. Ertl; James F. Cox; William H. Cooke; Cole A. Giller; Chester A. Ray; Lynda D. Lane; Jay C. Buckey; Friedhelm J. Baisch; Dwain L. Eckberg; David Robertson; Italo Biaggioni; C. Gunnar Blomqvist

Exposure to microgravity alters the distribution of body fluids and the degree of distension of cranial blood vessels, and these changes in turn may provoke structural remodelling and altered cerebral autoregulation. Impaired cerebral autoregulation has been documented following weightlessness simulated by head‐down bed rest in humans, and is proposed as a mechanism responsible for postspaceflight orthostatic intolerance. In this study, we tested the hypothesis that spaceflight impairs cerebral autoregulation. We studied six astronauts ∼72 and 23 days before, after 1 and 2 weeks in space (n= 4), on landing day, and 1 day after the 16 day Neurolab space shuttle mission. Beat‐by‐beat changes of photoplethysmographic mean arterial pressure and transcranial Doppler middle cerebral artery blood flow velocity were measured during 5 min of spontaneous breathing, 30 mmHg lower body suction to simulate standing in space, and 10 min of 60 deg passive upright tilt on Earth. Dynamic cerebral autoregulation was quantified by analysis of the transfer function between spontaneous changes of mean arterial pressure and cerebral artery blood flow velocity, in the very low‐ (0.02–0.07 Hz), low‐ (0.07–0.20 Hz) and high‐frequency (0.20–0.35 Hz) ranges. Resting middle cerebral artery blood flow velocity did not change significantly from preflight values during or after spaceflight. Reductions of cerebral blood flow velocity during lower body suction were significant before spaceflight (P < 0.05, repeated measures ANOVA), but not during or after spaceflight. Absolute and percentage reductions of mean (±s.e.m.) cerebral blood flow velocity after 10 min upright tilt were smaller after than before spaceflight (absolute, −4 ± 3 cm s−1 after versus−14 ± 3 cm s−1 before, P= 0.001; and percentage, −8.0 ± 4.8% after versus−24.8 ± 4.4% before, P < 0.05), consistent with improved rather than impaired cerebral blood flow regulation. Low‐frequency gain decreased significantly (P < 0.05) by 26, 23 and 27% after 1 and 2 weeks in space and on landing day, respectively, compared with preflight values, which is also consistent with improved autoregulation. We conclude that human cerebral autoregulation is preserved, and possibly even improved, by short‐duration spaceflight.

Collaboration


Dive into the Andrew C. Ertl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin D. Levine

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James A. Pawelczyk

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

James F. Cox

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge