Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donna Eberhart-Phillips is active.

Publication


Featured researches published by Donna Eberhart-Phillips.


Science | 1993

Near-field investigations of the Landers earthquake sequence, April to July 1992.

Kerry Sieh; Lucile M. Jones; Egill Hauksson; Kenneth W. Hudnut; Donna Eberhart-Phillips; Thomas H. Heaton; Susan E. Hough; K. Hutton; Hiroo Kanamori; Anne Lilje; Scott C. Lindvall; Sally F. McGill; Jim Mori; Charles M. Rubin; James A. Spotila; Joann M. Stock; Hong Kie Thio; Jerome Treiman; Brian P. Wernicke; Judith Zachariasen

The Landers earthquake, which had a moment magnitude (Mw) of 7.3, was the largest earthquake to strike the contiguous United States in 40 years. This earthquake resulted from the rupture of five major and many minor right-lateral faults near the southern end of the eastern California shear zone, just north of the San Andreas fault. Its Mw 6.1 preshock and Mw 6.2 aftershock had their own aftershocks and foreshocks. Surficial geological observations are consistent with local and far-field seismologic observations of the earthquake. Large surficial offsets (as great as 6 meters) and a relatively short rupture length (85 kilometers) are consistent with seismological calculations of a high stress drop (200 bars), which is in turn consistent with an apparently long recurrence interval for these faults.


Journal of Geophysical Research | 1993

Three-dimensional velocity structure, seismicity, and fault structure in the Parkfield Region, central California

Donna Eberhart-Phillips; Andrew J. Michael

This study examines the three-dimensional velocity structure in a 60- by 80-km region containing the Parkfield segment of the San Andreas fault. We use local earthquake and shot P arrival times in an iterative simultaneous inversion for velocity and hypocentral parameters. Using the three-dimensional model, we relocated 5251 events that occurred from 1969 to 1991, as well as the 1966 aftershocks, and computed 664 fault plane solutions. The San Andreas fault (SAF), characterized by a sharp across-fault velocity gradient, is the primary feature in the velocity solution. There is a 5–20% lateral change in velocity over a 4-km width, the contrast being sharper where there is better resolution. The model also shows significant variations in the velocity and in the complexity of the velocity patterns along the SAF. The largest across fault velocity difference is below Middle Mountain, where a large volume of low-velocity material impinges on the SAF from the northeast. This material is inferred to be overpressured and may be key to understanding the unusual behavior in the Parkfield preparation zone. A 20-km-long high-velocity slice is imaged northeast of the SAF near Gold Hill. Its along-fault length corresponds to the length of the maximum slip in 1966. The relocated seismicity shows that the San Andreas fault is a planar vertical fault zone at seismogenic depths. Ninety percent of the fault plane solutions that are on, or near, the SAF were right-lateral strike-slip on subvertical fault planes that parallel the SAF. Thus the surface fault complexities do not appear to extend to depth and therefore do not explain the rupture character at Parkfield. At Parkfield, variations in material properties play a key role in fault segmentation and deformation style. Our observations suggest that there may be a general relation between increasing velocity and increasing ability of the rocks to store strain energy and release it as brittle failure.


Bulletin of the Seismological Society of America | 2006

Three-dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California, region

Clifford H. Thurber; Haijiang Zhang; Felix Waldhauser; Jeanne L. Hardebeck; Andrew J. Michael; Donna Eberhart-Phillips

We present a new three-dimensional (3D) compressional wavespeed ( V p) model for the Parkfield region, taking advantage of the recent seismicity associated with the 2003 San Simeon and 2004 Parkfield earthquake sequences to provide increased model resolution compared to the work of Eberhart-Phillips and Michael (1993) (epm93). Taking the epm93 3D model as our starting model, we invert the arrival-time data from about 2100 earthquakes and 250 shots recorded on both permanent network and temporary stations in a region 130 km northeast–southwest by 120 km northwest–southeast. We include catalog picks and cross-correlation and catalog differential times in the inversion, using the double-difference tomography method of Zhang and Thurber (2003). The principal V p features reported by epm93 and Michelini and McEvilly (1991) are recovered, but with locally improved resolution along the San Andreas Fault (saf) and near the active-source profiles. We image the previously identified strong wavespeed contrast (faster on the southwest side) across most of the length of the saf, and we also improve the image of a high V p body on the northeast side of the fault reported by epm93. This narrow body is at about 5- to 12-km depth and extends approximately from the locked section of the saf to the town of Parkfield. The footwall of the thrust fault responsible for the 1983 Coalinga earthquake is imaged as a northeast-dipping high wavespeed body. In between, relatively low wavespeeds (<5 km/sec) extend to as much as 10-km depth. We use this model to derive absolute locations for about 16,000 earthquakes from 1966 to 2005 and high-precision double-difference locations for 9,000 earthquakes from 1984 to 2005, and also to determine focal mechanisms for 446 earthquakes. These earthquake locations and mechanisms show that the seismogenic fault is a simple planar structure. The aftershock sequence of the 2004 mainshock concentrates into the same structures defined by the pre-2004 seismicity, confirming earlier observations (Waldhauser et al. , 2004) that the seismicity pattern at Parkfield is long lived and persists through multiple cycles of mainshocks. Online material : 3D V p model and earthquake relocations.


Journal of Geophysical Research | 1997

Continental subduction and three-dimensional crustal structure: The northern South Island, New Zealand

Donna Eberhart-Phillips; Martin Reyners

The three-dimensional Vp and Vp/Vs structure of a region where subduction transitions to oblique transform faulting has been determined using arrival times from 579 local earthquakes recorded during a temporary deployment, and 3146 earthquakes have been relocated. Between 40 km and 100 km depth, the subducted plate is imaged as a relatively low-velocity feature in the uppermost mantle, reflecting the continental nature of the subducted crust in this region. An increase in amplitude of this low-velocity feature from northeast to southwest can be related to an increase in the thickness of the crust of the subducted plate in this direction. Velocity variations within the subducted and overlying plates show some spatial correlation. This suggests an interaction between the plates which extends well beyond the plate interface and is consistent with other geophysical and geological evidence that the plate interface beneath Marlborough is currently not accommodating much active subduction. In the overlying plate, the Awatere fault is a major structural feature, associated with a low-velocity zone extending to 23 km depth. There is a marked change in structure near this fault, with seismic velocities being lower to the southeast. A relatively high level of seismicity occurs in this region of lower seismic velocities, suggesting a relationship between the two. A possible explanation for this is elevated pore pressures caused by fluids derived from dehydration of the continental subducted crust. The low-velocity region in the overlying plate coincides with the region of most intense active deformation, suggesting it is relatively weak.


Journal of Geophysical Research | 1993

The 1992 Landers Earthquake Sequence: Seismological observations

Egill Hauksson; Lucile M. Jones; Kate Hutton; Donna Eberhart-Phillips

The (M_W 6.1, 7.3, 6.2) 1992 Landers earthquakes began on April 23 with the M_W6.1 1992 Joshua Tree preshock and form the most substantial earthquake sequence to occur in California in the last 40 years. This sequence ruptured almost 100 km of both surficial and concealed faults and caused aftershocks over an area 100 km wide by 180 km long. The faulting was predominantly strike slip and three main events in the sequence had unilateral rupture to the north away from the San Andreas fault. The M_W6.1 Joshua Tree preshock at 33°N58′ and 116°W19′ on 0451 UT April 23 was preceded by a tightly clustered foreshock sequence (M≤4.6) beginning 2 hours before the mainshock and followed by a large aftershock sequence with more than 6000 aftershocks. The aftershocks extended along a northerly trend from about 10 km north of the San Andreas fault, northwest of Indio, to the east-striking Pinto Mountain fault. The M_w7.3 Landers mainshock occurred at 34°N13′ and 116°W26′ at 1158 UT, June 28, 1992, and was preceded for 12 hours by 25 small M≤3 earthquakes at the mainshock epicenter. The distribution of more than 20,000 aftershocks, analyzed in this study, and short-period focal mechanisms illuminate a complex sequence of faulting. The aftershocks extend 60 km to the north of the mainshock epicenter along a system of at least five different surficial faults, and 40 km to the south, crossing the Pinto Mountain fault through the Joshua Tree aftershock zone towards the San Andreas fault near Indio. The rupture initiated in the depth range of 3–6 km, similar to previous M∼5 earthquakes in the region, although the maximum depth of aftershocks is about 15 km. The mainshock focal mechanism showed right-lateral strike-slip faulting with a strike of N10°W on an almost vertical fault. The rupture formed an arclike zone well defined by both surficial faulting and aftershocks, with more westerly faulting to the north. This change in strike is accomplished by jumping across dilational jogs connecting surficial faults with strikes rotated progressively to the west. A 20-km-long linear cluster of aftershocks occurred 10–20 km north of Barstow, or 30–40 km north of the end of the mainshock rupture. The most prominent off-fault aftershock cluster occurred 30 km to the west of the Landers mainshock. The largest aftershock was within this cluster, the M_w6.2 Big Bear aftershock occurring at 34°N10′ and 116°W49′ at 1505 UT June 28. It exhibited left-lateral strike-slip faulting on a northeast striking and steeply dipping plane. The Big Bear aftershocks form a linear trend extending 20 km to the northeast with a scattered distribution to the north. The Landers mainshock occurred near the southernmost extent of the Eastern California Shear Zone, an 80-km-wide, more than 400-km-long zone of deformation. This zone extends into the Death Valley region and accommodates about 10 to 20% of the plate motion between the Pacific and North American plates. The Joshua Tree preshock, its aftershocks, and Landers aftershocks form a previously missing link that connects the Eastern California Shear Zone to the southern San Andreas fault.


Journal of Geophysical Research | 1995

Surface seismic and electrical methods to detect fluids related to faulting

Donna Eberhart-Phillips; William D. Stanley; Brian D. Rodriguez; William J. Lutter

In the absence of drilling, surface-based geophysical methods are necessary to observe fault zones and fault zone physical properties at seismogenic depths. These in situ physical properties can then be used to infer the presence and distribution of fluids along faults, although such observations are by nature indirect and become less exact with greater depth. Multiple observations of a range of such geophysical properties as compressional and shear seismic velocity (Vp and Vs), Vp/V5 ratio (related to Poissons ratio), resistivity and attenuation in and adjacent to fault zones offer the greatest hope of making inferences of the fault zone geometry, fluids in the fault zone, and fluid reservoirs in the surrounding crust. For simple geometries, fault zone guided waves can provide information on fault zone width and velocities for faults of the order of 200 m wide. To address the question of whether a narrow fault zone can be imaged well enough at depths of seismic rupture to infer the presence of anomalously high fluid/rock ratios, we present synthetic seismic tomography and magnetotelluric examples for an ideal case of a narrow fault zone with a simple geometry, large changes in material properties, and numerous earthquakes within the fault zone. A synthetic 0.5-km wide fault zone with 20% velocity reduction is well imaged using local earthquake tomography. When sequential velocity inversions are done, the true fault width is found, even to 9 km depth, although the calculated amplitude of the velocity reduction is lower than the actual amplitude. Vp/Vs is as well determined as Vp. Magnetotelluric imaging of a synthetic fault zone shows that a conductive fault zone can be well imaged within the upper 10 km. Further, a narrow (1 km) very low resistivity (3 ohm m) fault core can be imaged within a broad (5 km) low resistivity (10 ohm m) fault zone, illustrating that regions of a fault containing large quantities of interconnected fluids within a broader, conductive fault zone should be detectable. Thus variations in fluid content and fluid pressure can be inferred from electrical and seismic methods but there will always be uncertainty in these inferences due to the trade-off with other factors, such as intrinsic variations in porosity, mineralogy, and pore geometry. The best approach is combined modeling of varied seismic and electrical data.


Journal of Geophysical Research | 2001

A focused look at the Alpine fault, New Zealand: Seismicity, focal mechanisms, and stress observations

Beate Leitner; Donna Eberhart-Phillips; Helen Anderson

The Alpine fault is the Pacific-Australian plate boundary in the South Island of New Zealand. This study analyzes 195 earthquakes recorded during the 6 month duration of the Southern Alps Passive Seismic Experiment (SAPSE) in 1995/1996 and two Mr. 5.0 earthquakes and aftershocks in 1997, which occurred close to the central part of the Alpine fault. Precise earthquake locations are derived by simultaneous inversion for hypocenter parameters, a one-dimensional velocity model, and station corrections. Together with focal mechanisms calculated using a first motion and amplitude ratio method, these results provide a picture of the seismotectonics in the central South Island over a 6 month period. Moment tensor inversions of three earthquakes provide an independent means of comparison to the focal mechanisms derived using the amplitude/first motion method. To validate our observations over time, we compare the SAPSE seismicity with the seismicity recorded by the New Zealand National Seismic Network (NZNSN) and a local network at Lake Pukaki east of the Southern Alps (6 months versus 8 years). Our study indicates that the Alpine fault releases elastic strain seismically from the surface down to 10-12 km depth between Milford Sound in the south and the Hope fault in the north. The seismicity rate of the Alpine fault is low but comparable to locked sections of the San Andreas fault, with large earthquakes expected. Seismicity decreases north of Bruce Bay at the Alpine fault and within a triangular region along the Alpine fault located between the Hope and Porters Pass fault zones. We interpret this as the result of deformation distributed on the Alpine fault and the Hope and Porters Pass fault zones. The base of the seismogenic zone is fairly uniform at 12 km _+ 2km over large parts of the South Island. The high Alps region has a shallower base of the seismogenic zone, indicating localized elevated temperatures east of the Alpine fault. Most of the study region deforms under a uniform stress field with a maximum principal horizontal shortening direction of 110o-120 o, similar to geodetic observations and plate motions. This confirms that the region is not undergoing strain partitioning. The earthquake data show that the deformation away from the Alpine fault is distributed on mainly NNE trending thrust faults and strike-slip transfer faults with a maximum seismogenic depth of 12km.


Science | 1991

Relations among fault behavior, subsurface geology, and three-dimensional velocity models.

Andrew J. Michael; Donna Eberhart-Phillips

The development of three-dimensional P-wave velocity models for the regions surrounding five large earthquakes in California has lead to the recognition of relations among fault behavior and the material properties of the rocks that contact the fault at seismogenic depths; regions of high moment release appear to correlate with high seismic velocities whereas rupture initiation or termination may be associated with lower seismic velocities. These relations point toward a physical understanding of why faults are divided into segments that can fail independently, an understanding that could improve our ability to predict earthquakes and strong ground motion.


Journal of Geophysical Research | 1998

Seismotectonics of the Loma Prieta, California, region determined from three‐dimensional V p , V p / V s , and seismicity

Donna Eberhart-Phillips; Andrew J. Michael

Three-dimensional Vp and Vp/Vs velocity models for the Loma Prieta region were developed from the inversion of local travel time data (21,925 P arrivals and 1,116 S arrivals) from earthquakes, refraction shots, and blasts recorded on 1700 stations from the Northern California Seismic Network and numerous portable seismograph deployments. The velocity and density models and microearthquake hypocenters reveal a complex structure that includes a San Andreas fault extending to the base of the seismogenic layer. A body with high Vp extends the length of the rupture and fills the 5 km wide volume between the Loma Prieta mainshock rupture and the San Andreas and Sargent faults. We suggest that this body controls both the pattern of background seismicity on the San Andreas and Sargent faults and the extent of rupture during the mainshock, thus explaining how the background seismicity outlined the along-strike and depth extent of the mainshock rupture on a different fault plane 5 km away. New aftershock focal mechanisms, based on three-dimensional ray tracing through the velocity model, support a heterogeneous postseismic stress field and can not resolve a uniform fault normal compression. The subvertical (or steeply dipping) San Andreas fault and the fault surfaces that ruptured in the 1989 Loma Prieta earthquake are both parts of the San Andreas fault zone and this section of the fault zone does not have a single type of characteristic event.


Geochemistry Geophysics Geosystems | 2009

Characterizing the seismogenic zone of a major plate boundary subduction thrust: Hikurangi Margin, New Zealand

Laura M. Wallace; Martin Reyners; Ursula Cochran; Stephen Bannister; Philip M. Barnes; Kelvin Berryman; Gaye Downes; Donna Eberhart-Phillips; Åke Fagereng; Susan Ellis; Andrew Nicol; Robert McCaffrey; R. John Beavan; Stuart Henrys; Rupert Sutherland; Daniel H. N. Barker; Nicola Litchfield; John Townend; Russell Robinson; Rebecca Bell; Kate Wilson; William Power

The Hikurangi subduction margin, New Zealand, has not experienced any significant (>Mw 7.2) subduction interface earthquakes since historical records began ∼170 years ago. Geological data in parts of the North Island provide evidence for possible prehistoric great subduction earthquakes. Determining the seismogenic potential of the subduction interface, and possible resulting tsunami, is critical for estimating seismic hazard in the North Island of New Zealand. Despite the lack of confirmed historical interface events, recent geodetic and seismological results reveal that a large area of the interface is interseismically coupled, along which stress could be released in great earthquakes. We review existing geophysical and geological data in order to characterize the seismogenic zone of the Hikurangi subduction interface. Deep interseismic coupling of the southern portion of the Hikurangi interface is well defined by interpretation of GPS velocities, the locations of slow slip events, and the hypocenters of moderate to large historical earthquakes. Interseismic coupling is shallower on the northern and central portion of the Hikurangi subduction thrust. The spatial extent of the likely seismogenic zone at the Hikurangi margin cannot be easily explained by one or two simple parameters. Instead, a complex interplay between upper and lower plate structure, subducting sediment, thermal effects, regional tectonic stress regime, and fluid pressures probably controls the extent of the subduction thrusts seismogenic zone.

Collaboration


Dive into the Donna Eberhart-Phillips's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clifford H. Thurber

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Michael

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Lucile M. Jones

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. M. Wallace

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge