Donna Post Guillen
Idaho National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Donna Post Guillen.
Journal of Thermal Spray Technology | 2006
Dominic Varacalle; Donna Post Guillen; Douglas M. Deason; William Rhodaberger; Elliott Sampson
Statistically designed experiments were performed to compare the surface roughness produced by grit blasting A36/1020 steel using different abrasives. Grit blast media, blast pressure, and working distance were varied using a Box-type statistical design of experiment (SDE) approach. The surface textures produced by four metal grits (HG16, HG18, HG25, and HG40) and three conventional grits (copper slag, coal slag, and chilled iron) were compared. Substrate roughness was measured using surface profilometry and correlated with operating parameters. The HG16 grit produced the highest surface roughness of all the grits tested. Aluminum and zinc-aluminum coatings were deposited on the grit-blasted substrates using the twin-wire electric are (TWEA) process. Bond strength of the coatings was measured with a portable adhesion tester in accordance with ASTM standard D 4541. The coatings on substrates roughened with steel grit exhibit superior bond strength to those prepared with conventional grit. For aluminum coatings sprayed onto surfaces prepared with the HG16 grit, the bond strength was most influenced by current, spray distance, and spray gun pressure (in that order). The highest bond strength for the zinc-aluminum coatings was attained on surfaces prepared using the metal grits.
Journal of Thermal Spray Technology | 2006
Donna Post Guillen; Brian G. Williams
This paper examines the in-flight oxidation of aluminum sprayed in air using the twin-wire electric arc (TWEA) thermal spray process. Aerodynamic shear at the droplet surface increases the amount of in-flight oxidation by promoting entrainment of the surface oxides within the molten droplet and continually exposing fresh fluid available for oxidation. Mathematical predictions herein confirm experimental measurements that reveal an elevated, nearly constant surface temperature (∼2273 K) of the droplets during flight. The calculated oxide volume fraction of a “typical” droplet with internal circulation compares favorably to the experimentally determined oxide content (3.3–12.7%) for a typical TWEA-sprayed aluminum coating sprayed onto a room temperature substrate. It is concluded that internal circulation within the molten aluminum droplet is a significant source of oxidation. This effect produces an oxide content nearly two orders of magnitude larger than that of a droplet without continual oxidation.
Volume 5: Fuel Cycle and High and Low Level Waste Management and Decommissioning; Computational Fluid Dynamics (CFD), Neutronics Methods and Coupled Codes; Instrumentation and Control | 2009
Donna Post Guillen
A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.
Process Safety Progress | 2006
Jeffrey Hahn; Donna Post Guillen; Thomas Anderson
Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nations critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing control system vulnerabilities against physical and cyber attack is necessary to ensure the safety, reliability, integrity, and availability of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems and their components. In addition, the CSSTC promotes a proactive, collaborative approach to increase industrys awareness of standards, products, and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.
Volume 5: Fuel Cycle and High and Low Level Waste Management and Decommissioning; Computational Fluid Dynamics (CFD), Neutronics Methods and Coupled Codes; Instrumentation and Control | 2009
Elena A. Tselishcheva; Steven P. Antal; Michael Z. Podowski; Donna Post Guillen
The accuracy of numerical predictions for gas/liquid two-phase flows using Computational Multiphase Fluid Dynamics (CMFD) methods strongly depends on the formulation of models governing the interaction between the continuous liquid field and bubbles of different sizes. The purpose of this paper is to develop, test and validate a multifield model of adiabatic gas/liquid flows at intermediate gas concentrations (e.g., churn-turbulent flow regime), in which multiple-size bubbles are divided into a specified number of groups, each representing a prescribed range of sizes. The proposed modeling concept uses transport equations for the continuous liquid field and for each bubble field. The overall model has been implemented in the NPHASE-CMFD computer code. The results of NPHASE-CMFD simulations have been validated against the experimental data from the TOPFLOW test facility. Also, a parametric analysis on the effect of various modeling assumptions has been performed.
Nuclear Technology | 2018
Donna Post Guillen; Alexander W. Abboud; Richard Pokorny; William C. Eaton; Derek R. Dixon; Kevin M. Fox; Albert A. Kruger
Abstract Integrated models are being developed to represent the physics occurring within the high-level and low-activity waste melters that will be used to vitrify legacy tank waste at the Hanford site. These models couple the melt pool, cold cap, and plenum region within a single computational domain. Validation of the models is essential to ensure the reliability of the numerical predictions of the operational melters. Experimental data from laboratory- and pilot-scale tests are thus being used to inform and validate various aspects of the melter model. This paper presents a tiered approach to model validation consisting of a series of progressively more complex test cases designed to model the physics occurring in the full-scale system. A hierarchical methodology has been developed to segregate and simplify the physical phenomena affecting the multiphase flow and heat transfer within a waste glass melter. Four hierarchical levels are defined in a validation pyramid and built up in levels of increasing complexity from unit problems to subsystem cases, to pilot-scale systems, and then to the full-scale system.
Data in Brief | 2018
Alexander W. Abboud; Donna Post Guillen
An industrial fluidized bed reactor was designed to convert an aqueous solid laden stream into a consistent granular product. CFD simulations were run using the MFiX two-fluid model for a fluidizing bed operating at 650 °C. A set of simulations were run over a Latin-hypercube sample of five model parameters – bed particle size, bed particle density, coal particle size, spray feed flow rate, and fluidizing gas flow rate. Data from the simulations were collected on three quantities of interest – bed differential temperature, low solids velocity, and bed void fraction. The data presented here is the full set of response surfaces generated using the process Gaussian response surface model in the Dakota toolkit, as well as the table of data for coefficients of the fitted model. The fits to the five-dimensional Gaussian Process models were 0.7797, 0.8664, and 0.9440 for the temperature, velocity, and solids packing, respectively.
Computers & Chemical Engineering | 2018
Alexander W. Abboud; Donna Post Guillen
Abstract Legacy radioactive waste stored in tanks at the Hanford Site is scheduled to undergo vitrification in Joule-heated melters. A carefully calibrated computational fluid dynamics model has been developed to characterize fluid flow, chemistry and heat transfer in the melters. Bubbling is replaced by momentum source terms to approximate forced convection circulation patterns and reduce Courant number restrictions on the resolved liquid–air interface. Void zones in the electrical field compensate for the removal of bubbles. The efficiency of the radiation solver is improved by reducing the update frequency of the discrete ordinates and using lower quadrature. A simple polynomial fit captures the waste-to-glass reactions in the cold cap. These simplifications reduce the turnaround time such that it is possible to simulate hundreds of seconds of physical time per day with the calibrated model versus only several seconds of physical time with the original, higher-fidelity model.
Nuclear Technology | 2015
Donna Post Guillen
Abstract Results of a thermal evaluation are provided for a new shipping cask under consideration for transporting irradiated experiments between the test reactor and postirradiation examination (PIE) facilities. Most of the experiments will be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory and then later shipped to the Hot Fuel Examination Facility located at the Materials and Fuels Complex for PIE. To date, the General Electric (GE)-2000 cask has been used to transport experiment payloads between these facilities. However, the availability of the GE-2000 cask to support future experiment shipping is uncertain. In addition, the internal cavity of the GE-2000 cask is too short to accommodate shipping the larger payloads. Therefore, an alternate shipping capability is being pursued. The Battelle Energy Alliance, LLC, Research Reactor (BRR) cask has been determined to be the best alternative to the GE-2000 cask. An evaluation of the thermal performance of the BRR cask is necessary before proceeding with fabrication of the newly designed cask hardware and the development of handling, shipping, and transport procedures. This paper presents the results of the thermal evaluation of the BRR cask loaded with a representative set of fueled and nonfueled payloads. When analyzed with identical payloads, experiment temperatures were found to be lower with the BRR cask than with the GE-2000 cask. From a thermal standpoint, the BRR cask was found to be a suitable alternate to the GE-2000 cask for shipping irradiated experiment payloads.
Journal of the American Ceramic Society | 2015
Richard Pokorny; Zachary J. Hilliard; Derek R. Dixon; Michael J. Schweiger; Donna Post Guillen; Albert A. Kruger; Pavel R. Hrma