Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dora Dias-Santagata is active.

Publication


Featured researches published by Dora Dias-Santagata.


Science Translational Medicine | 2011

Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors

Lecia V. Sequist; Belinda A. Waltman; Dora Dias-Santagata; Subba R. Digumarthy; Alexa B. Turke; P. Fidias; Kristin Bergethon; Alice T. Shaw; Scott N. Gettinger; Arjola K. Cosper; Sara Akhavanfard; Rebecca S. Heist; Jennifer S. Temel; James G. Christensen; John Wain; Thomas J. Lynch; Kathy Vernovsky; Eugene J. Mark; Anthony John Iafrate; Mari Mino-Kenudson; J. A. Engelman

Lung cancers undergo dynamic genetic and histological changes upon developing resistance to EGFR inhibitors. The Shifting Sands of Lung Cancer Lung cancer is the leading cause of death globally and has proven very difficult to treat. The development almost a decade ago of tyrosine kinase inhibitors that specifically block the epidermal growth factor receptor (EGFR), which is switched on in many lung cancers, provided hope that targeted therapies would finally combat this deadly disease. However, only a certain subpopulation of lung cancer patients carrying specific activating mutations in EGFR responded clinically to EGFR inhibitors, and even among these patients, resistance to the inhibitor emerged within 12 months. To better understand how lung cancers develop drug resistance, Sequist and colleagues undertook a comprehensive genetic and histological analysis of 37 patients with non–small cell lung cancer (NSCLC), and they made some surprising discoveries. In an effort to understand the exact mechanism underscoring the acquisition of drug resistance in NSCLC patients treated with EGFR inhibitors, the investigators analyzed tumor biopsies from patients at the time they acquired resistance. All of the lung cancer patients retained their original activating EGFR mutations, but some patients had acquired another mutation in EGFR (T790M), which interferes with binding of the drug to the receptor, rendering the tumors resistant. Meanwhile, another group of patients became resistant because they developed amplification of a gene encoding the MET tyrosine kinase receptor, which, like EGFR, drives cell growth. Yet other patients acquired drug resistance mechanisms that had not been reported before including amplification of the EGFR gene itself and mutations in the PIK3CA gene (which encodes a subunit of the signaling molecule phosphatidylinositol 3-kinase). In addition, the authors observed that a few lung cancers transitioned from an epithelial cell morphology to a mesenchymal cell–like appearance, which is associated with a more aggressive type of tumor. In five patients, the authors discovered another type of transition that was even more surprising: the conversion of NSCLCs into small cell lung cancers (SCLCs), which are easier to treat. Indeed, these five patients responded well to the typical chemotherapy regimen used to treat SCLCs. To study the evolution of lung tumors in patients over the course of their disease, the investigators took serial biopsies from three lung cancer patients over 2 years. They found that when the patients acquired drug resistance and were then taken off the EGFR inhibitor, they lost the resistance mutations and their tumors once again became sensitive to treatment by either the same or a different EGFR inhibitor. The detailed genetic and histological analysis by Sequist and colleagues provides new insights into the shifting sands of drug resistance evolution in lung cancers and suggests that serial biopsies may be essential in the quest to reverse or even prevent the development of drug resistance. Lung cancers harboring mutations in the epidermal growth factor receptor (EGFR) respond to EGFR tyrosine kinase inhibitors, but drug resistance invariably emerges. To elucidate mechanisms of acquired drug resistance, we performed systematic genetic and histological analyses of tumor biopsies from 37 patients with drug-resistant non–small cell lung cancers (NSCLCs) carrying EGFR mutations. All drug-resistant tumors retained their original activating EGFR mutations, and some acquired known mechanisms of resistance including the EGFR T790M mutation or MET gene amplification. Some resistant cancers showed unexpected genetic changes including EGFR amplification and mutations in the PIK3CA gene, whereas others underwent a pronounced epithelial-to-mesenchymal transition. Surprisingly, five resistant tumors (14%) transformed from NSCLC into small cell lung cancer (SCLC) and were sensitive to standard SCLC treatments. In three patients, serial biopsies revealed that genetic mechanisms of resistance were lost in the absence of the continued selective pressure of EGFR inhibitor treatment, and such cancers were sensitive to a second round of treatment with EGFR inhibitors. Collectively, these results deepen our understanding of resistance to EGFR inhibitors and underscore the importance of repeatedly assessing cancers throughout the course of the disease.


Cancer Cell | 2010

Preexistence and Clonal Selection of MET Amplification in EGFR Mutant NSCLC

Alexa B. Turke; Kreshnik Zejnullahu; Yi-Long Wu; Youngchul Song; Dora Dias-Santagata; Eugene Lifshits; Luca Toschi; Andrew Rogers; Tony Mok; Lecia V. Sequist; Neal I. Lindeman; Carly Murphy; Sara Akhavanfard; Beow Y. Yeap; Yun Xiao; Marzia Capelletti; A. John Iafrate; Charles Lee; James G. Christensen; Jeffrey A. Engelman; Pasi A. Jänne

MET amplification activates ERBB3/PI3K/AKT signaling in EGFR mutant lung cancers and causes resistance to EGFR kinase inhibitors. We demonstrate that MET activation by its ligand, HGF, also induces drug resistance, but through GAB1 signaling. Using high-throughput FISH analyses in both cell lines and in patients with lung cancer, we identify subpopulations of cells with MET amplification prior to drug exposure. Surprisingly, HGF accelerates the development of MET amplification both in vitro and in vivo. EGFR kinase inhibitor resistance, due to either MET amplification or autocrine HGF production, was cured in vivo by combined EGFR and MET inhibition. These findings highlight the potential to prospectively identify treatment naive, patients with EGFR-mutant lung cancer who will benefit from initial combination therapy.


Cancer Discovery | 2012

EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib

Ryan B. Corcoran; Hiromichi Ebi; Alexa B. Turke; Erin M. Coffee; Michiya Nishino; Alexandria P. Cogdill; Ronald D. Brown; Patricia Della Pelle; Dora Dias-Santagata; Kenneth E. Hung; Keith T. Flaherty; Adriano Piris; Jennifer A. Wargo; Jeffrey Settleman; Mari Mino-Kenudson; Jeffrey A. Engelman

UNLABELLED BRAF mutations occur in 10-15% of colorectal cancers (CRCs) and confer adverse outcome. While RAF inhibitors such as vemurafenib (PLX4032) have proven effective in BRAF mutant melanoma, they are surprisingly ineffective in BRAF mutant CRCs, and the reason for this disparity remains unclear. Compared to BRAF mutant melanoma cells, BRAF mutant CRC cells were less sensitive to vemurafenib, and P-ERK suppression was not sustained in response to treatment. Although transient inhibition of phospho-ERK by vemurafenib was observed in CRC, rapid ERK re-activation occurred through EGFR-mediated activation of RAS and CRAF. BRAF mutant CRCs expressed higher levels of phospho-EGFR than BRAF mutant melanomas, suggesting that CRCs are specifically poised for EGFR-mediated resistance. Combined RAF and EGFR inhibition blocked reactivation of MAPK signaling in BRAF mutant CRC cells and markedly improved efficacy in vitro and in vivo. These findings support evaluation of combined RAF and EGFR inhibition in BRAF mutant CRC patients. SIGNIFICANCE BRAF valine 600 (V600) mutations occur in 10% to 15% of colorectal cancers, yet these tumors show a surprisingly low clinical response rate (~5%) to selective RAF inhibitors such as vemurafenib, which have produced dramatic response rates (60%–80%) in melanomas harboring the identical BRAF V600 mutation. We found that EGFR-mediated MAPK pathway reactivation leads to resistance to vemurafenib in BRAF-mutant colorectal cancers and that combined RAF and EGFR inhibition can lead to sustained MAPK pathway suppression and improved efficacy in vitro and in tumor xenografts.


Cancer Research | 2008

Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma

Clara Montagut; Sreenath V. Sharma; Toshi Shioda; Ultan McDermott; Matthew Ulman; Lindsey E. Ulkus; Dora Dias-Santagata; Hannah Stubbs; Diana Y. Lee; Anurag Singh; Lisa Drew; Daniel A. Haber; Jeffrey Settleman

Activating BRAF kinase mutations arise in approximately 7% of all human tumors, and preclinical studies have validated the RAF-mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase-ERK signaling cascade as a potentially important therapeutic target in this setting. Selective RAF kinase inhibitors are currently undergoing clinical development, and based on the experience with other kinase-targeted therapeutics, it is expected that clinical responses to these agents, if observed, will lead to the eventual emergence of drug resistance in most cases. Thus, it is important to establish molecular mechanisms underlying such resistance to develop effective therapeutic strategies to overcome or prevent drug resistance. To anticipate potential mechanisms of acquired resistance to RAF inhibitors during the course of treatment, we established drug-resistant clones from a human melanoma-derived cell line harboring the recurrent V600E activating BRAF mutation, which exhibits exquisite sensitivity to AZ628, a selective RAF kinase inhibitor. We determined that elevated CRAF protein levels account for the acquisition of resistance to AZ628 in these cells, associated with a switch from BRAF to CRAF dependency in tumor cells. We also found that elevated CRAF protein levels may similarly contribute to primary insensitivity to RAF inhibition in a subset of BRAF mutant tumor cells. Interestingly, AZ628-resistant cells demonstrating either primary drug insensitivity or acquired drug resistance exhibit exquisite sensitivity to the HSP90 inhibitor geldanamycin. Geldanamycin effectively promotes the degradation of CRAF, thereby revealing a potential therapeutic strategy to overcome resistance to RAF inhibition in a subset of BRAF mutant tumors.


Embo Molecular Medicine | 2010

Rapid targeted mutational analysis of human tumours: a clinical platform to guide personalized cancer medicine.

Dora Dias-Santagata; Sara Akhavanfard; Serena S. David; Kathy Vernovsky; Georgiana Kuhlmann; Susan L. Boisvert; Hannah Stubbs; Ultan McDermott; Jeffrey Settleman; Eunice L. Kwak; Jeffrey W. Clark; Steven J. Isakoff; Lecia V. Sequist; Jeffrey A. Engelman; Thomas J. Lynch; Daniel A. Haber; David N. Louis; Leif W. Ellisen; Darrell R. Borger; A. John Iafrate

Targeted cancer therapy requires the rapid and accurate identification of genetic abnormalities predictive of therapeutic response. We sought to develop a high‐throughput genotyping platform that would allow prospective patient selection to the best available therapies, and that could readily and inexpensively be adopted by most clinical laboratories. We developed a highly sensitive multiplexed clinical assay that performs very well with nucleic acid derived from formalin fixation and paraffin embedding (FFPE) tissue, and tests for 120 previously described mutations in 13 cancer genes. Genetic profiling of 250 primary tumours was consistent with the documented oncogene mutational spectrum and identified rare events in some cancer types. The assay is currently being used for clinical testing of tumour samples and contributing to cancer patient management. This work therefore establishes a platform for real‐time targeted genotyping that can be widely adopted. We expect that efforts like this one will play an increasingly important role in cancer management.


Oncologist | 2012

Frequent Mutation of Isocitrate Dehydrogenase (IDH)1 and IDH2 in Cholangiocarcinoma Identified Through Broad-Based Tumor Genotyping

Darrell R. Borger; Kenneth K. Tanabe; Kenneth C. Fan; Hector U. Lopez; Valeria Fantin; Kimberly Straley; David P. Schenkein; Marek Ancukiewicz; Hannah M. Liebman; Eunice L. Kwak; Jeffrey W. Clark; David P. Ryan; Vikram Deshpande; Dora Dias-Santagata; Leif W. Ellisen; Andrew X. Zhu; A. John Iafrate

Cancers of origin in the gallbladder and bile ducts are rarely curable with current modalities of cancer treatment. Our clinical application of broad-based mutational profiling for patients diagnosed with a gastrointestinal malignancy has led to the novel discovery of mutations in the gene encoding isocitrate dehydrogenase 1 (IDH1) in tumors from a subset of patients with cholangiocarcinoma. A total of 287 tumors from gastrointestinal cancer patients (biliary tract, colorectal, gastroesophageal, liver, pancreatic, and small intestine carcinoma) were tested during routine clinical evaluation for 130 site-specific mutations within 15 cancer genes. Mutations were identified within a number of genes, including KRAS (35%), TP53 (22%), PIK3CA (10%), BRAF (7%), APC (6%), NRAS (3%), AKT1 (1%), CTNNB1 (1%), and PTEN (1%). Although mutations in the metabolic enzyme IDH1 were rare in the other common gastrointestinal malignancies in this series (2%), they were found in three tumors (25%) of an initial series of 12 biliary tract carcinomas. To better define IDH1 and IDH2 mutational status, an additional 75 gallbladder and bile duct cancers were examined. Combining these cohorts of biliary cancers, mutations in IDH1 and IDH2 were found only in cholangiocarcinomas of intrahepatic origin (nine of 40, 23%) and in none of the 22 extrahepatic cholangiocarcinomas and none of the 25 gallbladder carcinomas. In an analysis of frozen tissue specimens, IDH1 mutation was associated with highly elevated tissue levels of the enzymatic product 2-hydroxyglutarate. Thus, IDH1 mutation is a molecular feature of cholangiocarcinomas of intrahepatic origin. These findings define a specific metabolic abnormality in this largely incurable type of gastrointestinal cancer and present a potentially new target for therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1

Kadoaki Ohashi; Lecia V. Sequist; Maria E. Arcila; Teresa Moran; Juliann Chmielecki; Ya Lun Lin; Yumei Pan; Lu Wang; Elisa de Stanchina; Kazuhiko Shien; Keisuke Aoe; Shinichi Toyooka; Katsuyuki Kiura; Lynnette Fernandez-Cuesta; Panos Fidias; James Chih-Hsin Yang; Vincent A. Miller; Gregory J. Riely; Mark G. Kris; Jeffrey A. Engelman; Cindy L. Vnencak-Jones; Dora Dias-Santagata; Marc Ladanyi; William Pao

Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) is inevitable in metastatic EGFR-mutant lung cancers. Here, we modeled disease progression using EGFR-mutant human tumor cell lines. Although five of six models displayed alterations already found in humans, one harbored an unexpected secondary NRAS Q61K mutation; resistant cells were sensitive to concurrent EGFR and MEK inhibition but to neither alone. Prompted by this finding and because RAS/RAF/MEK mutations are known mediators of acquired resistance in other solid tumors (colon cancers, gastrointestinal stromal tumors, and melanomas) responsive to targeted therapies, we analyzed the frequency of secondary KRAS/NRAS/BRAF/MEK1 gene mutations in the largest collection to date of lung cancers with acquired resistance to EGFR TKIs. No recurrent NRAS, KRAS, or MEK1 mutations were found in 212, 195, or 146 patient samples, respectively, but 2 of 195 (1%) were found to have mutations in BRAF (G469A and V600E). Ectopic expression of mutant NRAS or BRAF in drug-sensitive EGFR-mutant cells conferred resistance to EGFR TKIs that was overcome by addition of a MEK inhibitor. Collectively, these positive and negative results provide deeper insight into mechanisms of acquired resistance to EGFR TKIs in lung cancer and inform ongoing clinical trials designed to overcome resistance. In the context of emerging knowledge about mechanisms of acquired resistance to targeted therapies in various cancers, our data highlight the notion that, even though solid tumors share common signaling cascades, mediators of acquired resistance must be elucidated for each disease separately in the context of treatment.


Annals of Oncology | 2011

Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice

Lecia V. Sequist; Rebecca S. Heist; Alice T. Shaw; Panos Fidias; Rachel Rosovsky; Jennifer S. Temel; Inga T. Lennes; Subba R. Digumarthy; Belinda A. Waltman; E. Bast; Swathi Tammireddy; L. Morrissey; Alona Muzikansky; S. B. Goldberg; Justin F. Gainor; Colleen L. Channick; John C. Wain; Henning A. Gaissert; Dean M. Donahue; Ashok Muniappan; Cameron D. Wright; Henning Willers; Douglas J. Mathisen; Noah C. Choi; José Baselga; Thomas J. Lynch; Leif W. Ellisen; Mari Mino-Kenudson; Darrell R. Borger; Anthony John Iafrate

BACKGROUND Personalizing non-small-cell lung cancer (NSCLC) therapy toward oncogene addicted pathway inhibition is effective. Hence, the ability to determine a more comprehensive genotype for each case is becoming essential to optimal cancer care. METHODS We developed a multiplexed PCR-based assay (SNaPshot) to simultaneously identify >50 mutations in several key NSCLC genes. SNaPshot and FISH for ALK translocations were integrated into routine practice as Clinical Laboratory Improvement Amendments-certified tests. Here, we present analyses of the first 589 patients referred for genotyping. RESULTS Pathologic prescreening identified 552 (95%) tumors with sufficient tissue for SNaPshot; 51% had ≥1 mutation identified, most commonly in KRAS (24%), EGFR (13%), PIK3CA (4%) and translocations involving ALK (5%). Unanticipated mutations were observed at lower frequencies in IDH and β-catenin. We observed several associations between genotypes and clinical characteristics, including increased PIK3CA mutations in squamous cell cancers. Genotyping distinguished multiple primary cancers from metastatic disease and steered 78 (22%) of the 353 patients with advanced disease toward a genotype-directed targeted therapy. CONCLUSIONS Broad genotyping can be efficiently incorporated into an NSCLC clinic and has great utility in influencing treatment decisions and directing patients toward relevant clinical trials. As more targeted therapies are developed, such multiplexed molecular testing will become a standard part of practice.


Clinical Cancer Research | 2013

ALK Rearrangements Are Mutually Exclusive with Mutations in EGFR or KRAS: An Analysis of 1,683 Patients with Non–Small Cell Lung Cancer

Justin F. Gainor; Anna M. Varghese; Sai-Hong Ignatius Ou; Sheheryar Kabraji; Mark M. Awad; Ryohei Katayama; Amanda C. Pawlak; Mari Mino-Kenudson; Beow Y. Yeap; Gregory J. Riely; Anthony John Iafrate; Maria E. Arcila; Marc Ladanyi; J. A. Engelman; Dora Dias-Santagata; Alice T. Shaw

Purpose: Anaplastic lymphoma kinase (ALK) gene rearrangements define a distinct molecular subset of non–small cell lung cancer (NSCLC). Recently, several case reports and small series have reported that ALK rearrangements can overlap with other oncogenic drivers in NSCLC in crizotinib-naïve and crizotinib-resistant cancers. Experimental Design: We reviewed clinical genotyping data from 1,683 patients with NSCLC and investigated the prevalence of concomitant EGFR or KRAS mutations among patients with ALK-positive NSCLC. We also examined biopsy specimens from 34 patients with ALK-positive NSCLC after the development of resistance to crizotinib. Results: Screening identified 301 (17.8%) EGFR mutations, 465 (27.6%) KRAS mutations, and 75 (4.4%) ALK rearrangements. EGFR mutations and ALK rearrangements were mutually exclusive. Four patients with KRAS mutations were found to have abnormal ALK FISH patterns, most commonly involving isolated 5′ green probes. Sufficient tissue was available for confirmatory ALK immunohistochemistry in 3 cases, all of which were negative for ALK expression. Among patients with ALK-positive NSCLC who acquired resistance to crizotinib, repeat biopsy specimens were ALK FISH positive in 29 of 29 (100%) cases. Secondary mutations in the ALK kinase domain and ALK gene amplification were observed in 7 of 34 (20.6%) and 3 of 29 (10.3%) cases, respectively. No EGFR or KRAS mutations were identified among any of the 25 crizotinib-resistant, ALK-positive patients with sufficient tissue for testing. Conclusions: Functional ALK rearrangements were mutually exclusive with EGFR and KRAS mutations in a large Western patient population. This lack of overlap was also observed in ALK-positive cancers with acquired resistance to crizotinib. Clin Cancer Res; 19(15); 4273–81. ©2013 AACR.


Science Signaling | 2010

BRAF Gene Amplification Can Promote Acquired Resistance to MEK Inhibitors in Cancer Cells Harboring the BRAF V600E Mutation

Ryan B. Corcoran; Dora Dias-Santagata; Kristin Bergethon; Anthony John Iafrate; Jeffrey Settleman; Jeffrey A. Engelman

Amplification of an upstream gene leads to resistance to cancer drugs targeted downstream. Making Resistance Futile One of the lures of research into signal transduction is the possibility that it could lead to the development of highly targeted therapies that specifically interfere with pathways that are perturbed under pathological conditions. For instance, the discovery that mutations in BRAF are associated with various cancers led to the investigation of pharmacological inhibitors of BRAF—or the downstream kinase MEK (mitogen-activated or extracellular signal–regulated protein kinase kinase)—as therapies for individuals with BRAF-mutant tumors. All too often, however, initial promising clinical responses to such targeted therapies are followed by relapse, as cancer cells develop resistance to a particular therapeutic agent. Corcoran et al. explored the mechanisms whereby BRAF-mutant colorectal cancer cells became resistant to a MEK inhibitor and discovered that resistance involved amplification of the mutant BRAF gene. Furthermore, they found that cancer cells resistant to inhibition of either MEK or BRAF alone remained sensitive to the combined inhibition of BRAF and MEK, undergoing apoptosis at low concentrations of the inhibitors. They thus propose that, in individuals with BRAF-mutant tumors, combined inhibition of MEK and BRAF could overcome resistance to targeted therapy—and perhaps prevent it from arising. Oncogenic BRAF mutations are found in several tumor types, including melanomas and colorectal cancers. Tumors with BRAF mutations have increased mitogen-activated protein kinase pathway activity and heightened sensitivity to BRAF and MEK (mitogen-activated or extracellular signal–regulated protein kinase kinase) inhibitors. To identify potential mechanisms of acquired drug resistance, we generated clones resistant to the allosteric MEK inhibitor AZD6244 from two BRAF V600E mutant colorectal cancer cell lines that are highly sensitive to MEK or BRAF inhibition. These AZD6244-resistant (AR) clones, which exhibited cross-resistance to BRAF inhibitors, acquired resistance through amplification of the BRAF gene. A small percentage of treatment-naïve parental cells showed preexisting BRAF amplification. We observed similar amplification in a subset of cells in a BRAF-mutant colorectal cancer. In cell lines, BRAF amplification increased the abundance of phosphorylated MEK and impaired the ability of AZD6244 to inhibit ERK (extracellular signal–regulated kinase) phosphorylation. The ability of AZD6244 to inhibit ERK phosphorylation in AR cells was restored by treatment with a BRAF inhibitor at low concentrations that reduced the abundance of phosphorylated MEK to amounts observed in parental cells. Combined MEK and BRAF inhibition fully overcame resistance to MEK or BRAF inhibitors alone and was also more effective in parental cells compared to treatment with either inhibitor alone. These findings implicate BRAF amplification as a mechanism of resistance to both MEK and BRAF inhibitors and suggest combined MEK and BRAF inhibition as a clinical strategy to overcome, or possibly prevent, this mechanism of resistance.

Collaboration


Dive into the Dora Dias-Santagata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge