Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dóra Szinay is active.

Publication


Featured researches published by Dóra Szinay.


The Plant Genome | 2009

A Snapshot of the Emerging Tomato Genome Sequence

Lukas A. Mueller; R.M. Klein Lankhorst; S. D. Tanksley; R.M. Peters; M.J. van Staveren; Erwin Datema; Mark Fiers; R.C.H.J. van Ham; Dóra Szinay; J.H.S.G.M. de Jong

The genome of tomato (Solanum lycopersicum L.) is being sequenced by an international consortium of 10 countries (Korea, China, the United Kingdom, India, the Netherlands, France, Japan, Spain, Italy, and the United States) as part of the larger “International Solanaceae Genome Project (SOL): Systems Approach to Diversity and Adaptation” initiative. The tomato genome sequencing project uses an ordered bacterial artificial chromosome (BAC) approach to generate a high‐quality tomato euchromatic genome sequence for use as a reference genome for the Solanaceae and euasterids. Sequence is deposited at GenBank and at the SOL Genomics Network (SGN). Currently, there are around 1000 BACs finished or in progress, representing more than a third of the projected euchromatic portion of the genome. An annotation effort is also underway by the International Tomato Annotation Group. The expected number of genes in the euchromatin is ∼40,000, based on an estimate from a preliminary annotation of 11% of finished sequence. Here, we present this first snapshot of the emerging tomato genome and its annotation, a short comparison with potato (Solanum tuberosum L.) sequence data, and the tools available for the researchers to exploit this new resource are also presented. In the future, whole‐genome shotgun techniques will be combined with the BAC‐by‐BAC approach to cover the entire tomato genome. The high‐quality reference euchromatic tomato sequence is expected to be near completion by 2010.


Genetics | 2008

Cross-Species Bacterial Artificial Chromosome–Fluorescence in Situ Hybridization Painting of the Tomato and Potato Chromosome 6 Reveals Undescribed Chromosomal Rearrangements

Xiaomin Tang; Dóra Szinay; Chunting Lang; M.S. Ramanna; Edwin van der Vossen; Erwin Datema; René Klein Lankhorst; Jan de Boer; Sander A. Peters; Chris tian Bachem; Willem J. Stiekema; Richard G. F. Visser; Hans de Jong; Yuling Bai

Ongoing genomics projects of tomato (Solanum lycopersicum) and potato (S. tuberosum) are providing unique tools for comparative mapping studies in Solanaceae. At the chromosomal level, bacterial artificial chromosomes (BACs) can be positioned on pachytene complements by fluorescence in situ hybridization (FISH) on homeologous chromosomes of related species. Here we present results of such a cross-species multicolor cytogenetic mapping of tomato BACs on potato chromosomes 6 and vice versa. The experiments were performed under low hybridization stringency, while blocking with Cot-100 was essential in suppressing excessive hybridization of repeat signals in both within-species FISH and cross-species FISH of tomato BACs. In the short arm we detected a large paracentric inversion that covers the whole euchromatin part with breakpoints close to the telomeric heterochromatin and at the border of the short arm pericentromere. The long arm BACs revealed no deviation in the colinearity between tomato and potato. Further comparison between tomato cultivars Cherry VFNT and Heinz 1706 revealed colinearity of the tested tomato BACs, whereas one of the six potato clones (RH98-856-18) showed minor putative rearrangements within the inversion. Our results present cross-species multicolor BAC–FISH as a unique tool for comparative genetic studies across Solanum species.


Chromosome Research | 2008

FISH mapping and molecular organization of the major repetitive sequences of tomato

Song Bin Chang; Tae Jin Yang; Erwin Datema; Joke J.F.A. van Vugt; Ben Vosman; Anja G. J. Kuipers; Marie Meznikova; Dóra Szinay; René Klein Lankhorst; E. Jacobsen; Hans de Jong

This paper presents a bird’s-eye view of the major repeats and chromatin types of tomato. Using fluorescence in-situ hybridization (FISH) with Cot-1, Cot-10 and Cot-100 DNA as probes we mapped repetitive sequences of different complexity on pachytene complements. Cot-100 was found to cover all heterochromatin regions, and could be used to identify repeat-rich clones in BAC filter hybridization. Next we established the chromosomal locations of the tandem and dispersed repeats with respect to euchromatin, nucleolar organizer regions (NORs), heterochromatin, and centromeres. The tomato genomic repeats TGRII and TGRIII appeared to be major components of the pericentromeres, whereas the newly discovered TGRIV repeat was found mainly in the structural centromeres. The highly methylated NOR of chromosome 2 is rich in [GACA]4, a microsatellite that also forms part of the pericentromeres, together with [GA]8, [GATA]4 and Ty1-copia. Based on the morphology of pachytene chromosomes and the distribution of repeats studied so far, we now propose six different chromatin classes for tomato: (1) euchromatin, (2) chromomeres, (3) distal heterochromatin and interstitial heterochromatic knobs, (4) pericentromere heterochromatin, (5) functional centromere heterochromatin and (6) nucleolar organizer region.


Plant Journal | 2011

Chromosomal rearrangements between tomato and Solanum chilense hamper mapping and breeding of the TYLCV resistance gene Ty‐1

Maarten G. Verlaan; Dóra Szinay; Samuel F. Hutton; Hans de Jong; Richard Kormelink; Richard G. F. Visser; John W. Scott; Yuling Bai

Tomato yellow leaf curl disease, a devastating disease of Solanum lycopersicum (tomato), is caused by a complex of begomoviruses generally referred to as Tomato yellow leaf curl virus (TYLCV). Almost all breeding for TYLCV resistance has been based on the introgression of the Ty-1 resistance locus derived from Solanum chilense LA1969. Knowledge about the exact location of Ty-1 on tomato chromosome 6 will help in understanding the genomic organization of the Ty-1 locus. In this study, we analyze the chromosomal rearrangement and recombination behavior of the chromosomal region where Ty-1 is introgressed. Nineteen markers on tomato chromosome 6 were used in F(2) populations obtained from two commercial hybrids, and showed the presence of a large introgression in both. Fluorescence in situ hybridization (FISH) analysis revealed two chromosomal rearrangements between S. lycopersicum and S. chilense LA1969 in the Ty-1 introgression. Furthermore, a large-scale recombinant screening in the two F(2) populations was performed, and 30 recombinants in the Ty-1 introgression were identified. All recombination events were located on the long arm beyond the inversions, showing that recombination in the inverted region was absent. Disease tests on progenies of informative recombinants with TYLCV mapped Ty-1 to the long arm between markers MSc05732-4 and MSc05732-14, an interval overlapping with the reported Ty-3 region, which led to the indication that Ty-1 and Ty-3 may be allelic. With this study we prove that FISH can be used as a diagnostic tool to aid in the accurate mapping of genes that were introgressed from wild species into cultivated tomato.


New Phytologist | 2012

Chromosome evolution in Solanum traced by cross‐species BAC‐FISH

Dóra Szinay; Erik Wijnker; Ronald G. van den Berg; Richard G. F. Visser; Hans de Jong; Yuling Bai

Chromosomal rearrangements are relatively rare evolutionary events and can be used as markers to study karyotype evolution. This research aims to use such rearrangements to study chromosome evolution in Solanum. Chromosomal rearrangements between Solanum crops and several related wild species were investigated using tomato and potato bacterial artificial chromosomes (BACs) in a multicolour fluorescent in situ hybridization (FISH). The BACs selected are evenly distributed over seven chromosomal arms containing inversions described in previous studies. The presence/absence of these inversions among the studied Solanum species were determined and the order of the BAC-FISH signals was used to construct phylogenetic trees.Compared with earlier studies, data from this study provide support for the current grouping of species into different sections within Solanum; however, there are a few notable exceptions, such as the tree positions of S. etuberosum (closer to the tomato group than to the potato group) and S. lycopersicoides (sister to S. pennellii). These apparent contradictions might be explained by interspecific hybridization events and/or incomplete lineage sorting. This cross-species BAC painting technique provides unique information on genome organization, evolution and phylogenetic relationships in a wide variety of species. Such information is very helpful for introgressive breeding.


Plant Journal | 2012

Structural homology in the Solanaceae: analysis of genomic regions in support of synteny studies in tomato, potato and pepper

Sander A. Peters; Joachim W. Bargsten; Dóra Szinay; José van de Belt; Richard G. F. Visser; Yuling Bai; Hans de Jong

We have analysed the structural homology in euchromatin regions of tomato, potato and pepper with special attention for the long arm of chromosome 2 (2L). Molecular organization and colinear junctions were delineated using multi-color BAC FISH analysis and comparative sequence alignment. We found large-scale rearrangements including inversions and segmental translocations that were not reported in previous comparative studies. Some of the structural rearrangements are specific for the tomato clade, and differentiate tomato from potato, pepper and other Solanaceous species. Although local gene vicinity is largely preserved, there are many small-scale synteny perturbations. Gene adjacency in the aligned segments was frequently disrupted for 47% of the ortholog pairs as a result of gene and LTR retrotransposon insertions, and occasionally by single gene inversions and translocations. Our data also suggests that long distance intra-chromosomal rearrangements and local gene rearrangements have evolved frequently during speciation in the Solanum genus, and that small changes are more prevalent than large-scale differences. The occurrence of sonata and harbinger transposable elements and other repeats near or at junction breaks is considered in the light of repeat-mediated rearrangements and a reconstruction scenario for an ancestral 2L topology is discussed.


Plant Journal | 2009

Solanum lycopersicum cv. Heinz 1706 chromosome 6: distribution and abundance of genes and retrotransposable elements

Sander A. Peters; Erwin Datema; Dóra Szinay; Marjo J. van Staveren; Elio Schijlen; Jan C. van Haarst; Thamara Hesselink; Marleen H. C. Abma-Henkens; Yuling Bai; Hans de Jong; Willem J. Stiekema; René Klein Lankhorst; Roeland C. H. J. van Ham

We studied the physical and genetic organization of chromosome 6 of tomato (Solanum lycopersicum) cv. Heinz 1706 by combining bacterial artificial chromosome (BAC) sequence analysis, high-information-content fingerprinting, genetic analysis, and BAC-fluorescent in situ hybridization (FISH) mapping data. The chromosome positions of 81 anchored seed and extension BACs corresponded in most cases with the linear marker order on the high-density EXPEN 2000 linkage map. We assembled 25 BAC contigs and eight singleton BACs spanning 2.0 Mb of the short-arm euchromatin, 1.8 Mb of the pericentromeric heterochromatin and 6.9 Mb of the long-arm euchromatin. Sequence data were combined with their corresponding genetic and pachytene chromosome positions into an integrated map that covers approximately a third of the chromosome 6 euchromatin and a small part of the pericentromeric heterochromatin. We then compared physical length (Mb), genetic (cM) and chromosome distances (microm) for determining gap sizes between contigs, revealing relative hot and cold spots of recombination. Through sequence annotation we identified several clusters of functionally related genes and an uneven distribution of both gene and repeat sequences between heterochromatin and euchromatin domains. Although a greater number of the non-transposon genes were located in the euchromatin, the highly repetitive (22.4%) pericentromeric heterochromatin displayed an unexpectedly high gene content of one gene per 36.7 kb. Surprisingly, the short-arm euchromatin was relatively rich in repeats as well, with a repeat content of 13.4%, yet the ratio of Ty3/Gypsy and Ty1/Copia retrotransposable elements across the chromosome clearly distinguished euchromatin (2:3) from heterochromatin (3:2).


Euphytica | 2009

The potential of high-resolution BAC-FISH in banana breeding

Guy de Capdeville; Manoel Teixeira Souza Júnior; Dóra Szinay; Leandro Eugenio Cardamone Diniz; Erik Wijnker; Rony Swennen; G.H.J. Kema; Hans de Jong

The genetic complexity in the genus Musa has been subject of study in many breeding programs worldwide. Parthenocarpy, female sterility, polyploidy in different cultivars and limited amount of genetic and genomic information make the production of new banana cultivars difficult and time consuming. In addition, it is known that part of the cultivars and related wild species in the genus contain numerous chromosomal rearrangements. In order to produce new cultivars more effectively breeders must better understand the genetic differences of the potential crossing parents for introgression hybridization, but extensive genetic information is lacking. As an alternative to achieve information on genetic collinearity we make use of modern chromosome map technology known as high-resolution fluorescent in situ hybridization (FISH). This article presents the technical aspects and applications of such a technology in Musa species. The technique deals with BAC clone positioning on pachytene chromosomes of Calcutta 4 (Musa acuminata ssp. burmanicoides, A genome group, section Eumusa) and M. velutina (section Rodochlamys). Pollen mother cells digestion with pectolytic enzymes and maceration with acetic acid were optimized for making cell spread preparations appropriate for FISH. As an example of this approach we chose BAC clones that contain markers to known resistance genes and hybridize them for establishing their relative positions on the two species. Technical challenges for adapting existing protocols to the banana cells are presented. We also discuss how this technique can be instrumental for validating collinearity between potential crossing parents and how the method can be helpful in future mapping initiatives, and how this method allows identification of chromosomal rearrangements between related Musa species and cultivars.


Plant Journal | 2008

High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6

Dóra Szinay; Song Bin Chang; Ludmila Khrustaleva; Sander A. Peters; Elio Schijlen; Yuling Bai; Willem J. Stiekema; Roeland C. H. J. van Ham; Hans de Jong; René Klein Lankhorst


Molecular Breeding | 2014

Fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato

Xiaohui Yang; Myluska Caro; Samuel F. Hutton; John W. Scott; Yanmei Guo; Xiaoxuan Wang; Harunur Rashid; Dóra Szinay; Hans de Jong; Richard G. F. Visser; Yuling Bai; Yongchen Du

Collaboration


Dive into the Dóra Szinay's collaboration.

Top Co-Authors

Avatar

Hans de Jong

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Yuling Bai

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Richard G. F. Visser

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Erwin Datema

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

René Klein Lankhorst

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Sander A. Peters

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Willem J. Stiekema

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Elio Schijlen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Erik Wijnker

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Roeland C. H. J. van Ham

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge