Dorina Gabriela Karottki
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dorina Gabriela Karottki.
Mutation Research-reviews in Mutation Research | 2014
Peter Møller; Pernille Høgh Danielsen; Dorina Gabriela Karottki; Kim Jantzen; Martin Roursgaard; Henrik Klingberg; Ditte Marie Jensen; Daniel Vest Christophersen; Jette Gjerke Hemmingsen; Yi Cao; Steffen Loft
Generation of oxidatively damaged DNA by particulate matter (PM) is hypothesized to occur via production of reactive oxygen species (ROS) and inflammation. We investigated this hypothesis by comparing ROS production, inflammation and oxidatively damaged DNA in different experimental systems investigating air pollution particles. There is substantial evidence indicating that exposure to air pollution particles was associated with elevated levels of oxidatively damaged nucleobases in circulating blood cells and urine from humans, which is supported by observations of elevated levels of genotoxicity in cultured cells exposed to similar PM. Inflammation is most pronounced in cultured cells and animal models, whereas an elevated level of oxidatively damaged DNA is more pronounced than inflammation in humans. There is non-congruent data showing corresponding variability in effect related to PM sampled at different locations (spatial variability), times (temporal variability) or particle size fraction across different experimental systems of acellular conditions, cultured cells, animals and humans. Nevertheless, there is substantial variation in the genotoxic, inflammation and oxidative stress potential of PM sampled at different locations or times. Small air pollution particles did not appear more hazardous than larger particles, which is consistent with the notion that constituents such as metals and organic compounds also are important determinants for PM-generated oxidative stress and inflammation. In addition, the results indicate that PM-mediated ROS production is involved in the generation of inflammation and activated inflammatory cells can increase their ROS production. The observations indicate that air pollution particles generate oxidatively damaged DNA by promoting a milieu of oxidative stress and inflammation.
Environmental Science & Technology | 2013
Gabriel Bekö; Charles J. Weschler; Aneta Wierzbicka; Dorina Gabriela Karottki; Jørn Toftum; Steffen Loft; Geo Clausen
Particle number (PN) concentrations (10-300 nm in size) were continuously measured over a period of ~45 h in 56 residences of nonsmokers in Copenhagen, Denmark. The highest concentrations were measured when occupants were present and awake (geometric mean, GM: 22.3 × 10(3) cm(-3)), the lowest when the homes were vacant (GM: 6.1 × 10(3) cm(-3)) or the occupants were asleep (GM: 5.1 × 10(3) cm(-3)). Diary entries regarding occupancy and particle related activities were used to identify source events and apportion the daily integrated exposure among sources. Source events clearly resulted in increased PN concentrations and decreased average particle diameter. For a given event, elevated particle concentrations persisted for several hours after the emission of fresh particles ceased. The residential daily integrated PN exposure in the 56 homes ranged between 37 × 10(3) and 6.0 × 10(6) particles per cm(3)·h/day (GM: 3.3 × 10(5) cm(-3)·h/day). On average, ~90% of this exposure occurred outside of the period from midnight to 6 a.m. Source events, especially candle burning, cooking, toasting, and unknown activities, were responsible on average for ~65% of the residential integrated exposure (51% without the unknown activities). Candle burning occurred in half of the homes where, on average, it was responsible for almost 60% of the integrated exposure.
Environment International | 2014
Dorina Gabriela Karottki; Gabriel Bekö; Geo Clausen; Anne Mette Madsen; Zorana Jovanovic Andersen; Andreas Massling; Matthias Ketzel; Thomas Ellermann; Rikke Lund; Torben Sigsgaard; Peter Møller; Steffen Loft
This cross-sectional study investigated the relationship between exposure to airborne indoor and outdoor particulate matter (PM) and cardiovascular and respiratory health in a population-based sample of 58 residences in Copenhagen, Denmark. Over a 2-day period indoor particle number concentrations (PNC, 10-300 nm) and PM2.5 (aerodynamic diameter<2.5 μm) were monitored for each of the residences in the living room, and outdoor PNC (10-280 nm), PM2.5 and PM10 (aerodynamic diameter<10 μm) were monitored at an urban background station in Copenhagen. In the morning, after the 2-day monitoring period, we measured microvascular function (MVF) and lung function and collected blood samples for biomarkers related to inflammation, in 78 middle-aged residents. Bacteria, endotoxin and fungi were analyzed in material from electrostatic dust fall collectors placed in the residences for 4 weeks. Data were analyzed using linear regression with the generalized estimating equation approach. Statistically significant associations were found between indoor PNC, dominated by indoor use of candles, and lower lung function, the prediabetic marker HbA1c and systemic inflammatory markers observed as changes in leukocyte differential count and expression of adhesion markers on monocytes, whereas C-reactive protein was significantly associated with indoor PM2.5. The presence of indoor endotoxin was associated with lower lung function and expression of adhesion markers on monocytes. An inverse association between outdoor PNC and MVF was also statistically significant. The study suggests that PNC in the outdoor environment may be associated with decreased MVF, while PNC, mainly driven by candle burning, and bioaerosols in the indoor environment may have a negative effect on lung function and markers of systemic inflammation and diabetes.
Mutagenesis | 2015
Peter Møller; Jette Gjerke Hemmingsen; Ditte Marie Jensen; Pernille Høgh Danielsen; Dorina Gabriela Karottki; Kim Jantzen; Martin Roursgaard; Yi Cao; Ali Kermanizadeh; Henrik Klingberg; Daniel Vest Christophersen; Lars-Georg Hersoug; Steffen Loft
Exposure to ambient air particles is associated with elevated levels of DNA strand breaks (SBs) and endonuclease III, formamidopyrimidine DNA glycosylase (FPG) and oxoguanine DNA glycosylase-sensitive sites in cell cultures, animals and humans. In both animals and cell cultures, increases in SB and in oxidatively damaged DNA are seen after exposure to a range of engineered nanomaterials (ENMs), including carbon black, carbon nanotubes, fullerene C60, ZnO, silver and gold. Exposure to TiO2 has generated mixed data with regard to SB and oxidatively damaged DNA in cell cultures. Nanosilica does not seem to be associated with generation of FPG-sensitive sites in cell cultures, while large differences in SB generation between studies have been noted. Single-dose airway exposure to nanosized carbon black and multi-walled carbon nanotubes in animal models seems to be associated with elevated DNA damage levels in lung tissue in comparison to similar exposure to TiO2 and fullerene C60. Oral exposure has been associated with augmented DNA damage levels in cells of internal organs, although the doses have been typically very high. Intraveneous and intraperitoneal injection of ENMs have shown contradictory results dependent on the type of ENM and dose in each set of experiments. In conclusion, the exposure to both combustion-derived particles and ENMs is associated with increased levels of DNA damage in the comet assay. Particle size, composition and crystal structure of ENM are considered important determinants of toxicity, whereas their combined contributions to genotoxicity in the comet assay are yet to be thoroughly investigated.
International Journal of Environmental Research and Public Health | 2015
Dorina Gabriela Karottki; Michal Spilak; Marie Frederiksen; Zorana Jovanovic Andersen; Anne Mette Madsen; Matthias Ketzel; Andreas Massling; Lars Gunnarsen; Peter Møller; Steffen Loft
To explore associations of exposure to ambient and indoor air particulate and bio-aerosol pollutants with cardiovascular and respiratory disease markers, we utilized seven repeated measurements from 48 elderly subjects participating in a 4-week home air filtration study. Microvascular function (MVF), lung function, blood leukocyte counts, monocyte adhesion molecule expression, C-reactive protein, Clara cell protein (CC16) and surfactant protein-D (SPD) were examined in relation to exposure preceding each measurement. Exposure assessment included 48-h urban background monitoring of PM10, PM2.5 and particle number concentration (PNC), weekly measurements of PM2.5 in living- and bedroom, 24-h measurements of indoor PNC three times, and bio-aerosol components in settled dust on a 2-week basis. Statistically significant inverse associations included: MVF with outdoor PNC; granulocyte counts with PM2.5; CD31 expression with dust fungi; SPD with dust endotoxin. Significant positive associations included: MVF with dust bacteria; monocyte expression of CD11 with PM2.5 in the bedroom and dust bacteria and endotoxin, CD31 expression with dust serine protease; serum CC16 with dust NAGase. Multiple comparisons demand cautious interpretation of results, which suggest that outdoor PNC have adverse effects on MVF, and outdoor and indoor PM2.5 and bio-aerosols are associated with markers of inflammation and lung cell integrity.
Environmental Health | 2014
Yulia Olsen; Dorina Gabriela Karottki; Ditte Marie Jensen; Gabriel Bekö; Birthe Uldahl Kjeldsen; Geo Clausen; Lars-Georg Hersoug; Gitte Juel Holst; Aneta Wierzbicka; Torben Sigsgaard; Allan Linneberg; Peter Møller; Steffen Loft
BackgroundExposure to ambient air particulate matter (PM) has been linked to decline in pulmonary function and cardiovascular events possibly through inflammation. Little is known about individual exposure to ultrafine particles (UFP) inside and outside modern homes and associated health-related effects.MethodsAssociations between vascular and lung function, inflammation markers and exposure in terms of particle number concentration (PNC; d = 10-300 nm) were studied in a cross-sectional design with personal and home indoor monitoring in the Western Copenhagen Area, Denmark. During 48-h, PNC and PM2.5 were monitored in living rooms of 60 homes with 81 non-smoking subjects (30-75 years old), 59 of whom carried personal monitors both when at home and away from home. We measured lung function in terms of the FEV1/FVC ratio, microvascular function (MVF) and pulse amplitude by digital artery tonometry, blood pressure and biomarkers of inflammation including C-reactive protein, and leukocyte counts with subdivision in neutrophils, eosinophils, monocytes, and lymphocytes in blood.ResultsPNC from personal and stationary home monitoring showed weak correlation (r = 0.15, p = 0.24). Personal UFP exposure away from home was significantly inversely associated with MVF (1.3% decline per interquartile range, 95% confidence interval: 0.1-2.5%) and pulse amplitude and positively associated with leukocyte and neutrophil counts. The leukocyte and neutrophil counts were also positively and pulse amplitude negatively associated with total personal PNC. Indoor PNC and PM2.5 showed positive association with blood pressure and inverse association with eosinophil counts.ConclusionsThe inverse association between personal exposure away from home and MVF is consistent with adverse health effects of UFP from sources outside the home and might be related to increased inflammation indicated by leukocyte counts, whereas UFP from sources in the home could have less effect.
Environmental and Molecular Mutagenesis | 2014
Annie Jensen; Dorina Gabriela Karottki; Jannie Christensen; Jakob Hjort Bønløkke; Torben Sigsgaard; Marianne Glasius; Steffen Loft; Peter Møller
Exposure to particles from combustion of wood is associated with respiratory symptoms, whereas there is limited knowledge about systemic effects. We investigated effects on systemic inflammation, oxidative stress and DNA damage in humans who lived in a reconstructed Viking Age house, with indoor combustion of wood for heating and cooking. The subjects were exposed to high indoor concentrations of PM2.5 (700–3,600 µg/m3), CO (10.7–15.3 ppm) and NO2 (140–154 µg/m3) during a 1‐week stay. Nevertheless, there were unaltered levels of genotoxicity, determined as DNA strand breaks and formamidopyrimidine DNA glycosylase and oxoguanine DNA glycosylase 1 sensitive sites in peripheral blood mononuclear cells. There were also unaltered expression levels of OGG1, HMOX1, CCL2, IL8, and TNF levels in leukocytes. In serum, there were unaltered levels of C‐reactive protein, IL6, IL8, TNF, lactate dehydrogenase, cholesterol, triglycerides, and high‐density lipoproteins. The wood smoke exposure was associated with decreased serum levels of sICAM‐1, and a tendency to decreased sVCAM‐1 levels. There was a minor increase in the levels of circulating monocytes expressing CD31, whereas there were unaltered expression levels of CD11b, CD49d, and CD62L on monocytes after the stay in the house. In conclusion, even a high inhalation exposure to wood smoke was associated with limited systemic effects on markers of oxidative stress, DNA damage, inflammation, and monocyte activation. Environ. Mol. Mutagen. 55:652–661, 2014.
Applied and Environmental Microbiology | 2016
Anne Mette Madsen; Søren Thor Larsen; Ismo K. Koponen; Kirsten I. Kling; Afnan Barooni; Dorina Gabriela Karottki; Kira Tendal; Peder Wolkoff
ABSTRACT In the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 107 CFU of fungi/m3 air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols contained Aspergillus nidulans, Aspergillus niger, Aspergillus ustus, Aspergillus versicolor, Chaetomium globosum, Cladosporium herbarum, Penicillium brevicompactum, Penicillium camemberti, Penicillium chrysogenum, Penicillium commune, Penicillium glabrum, Penicillium olsonii, Penicillium rugulosum, Stachybotrys chartarum, and Wallemia sebi. They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition.
Indoor and Built Environment | 2016
Elvira Vaclavik Bräuner; Dorina Gabriela Karottki; Marie Frederiksen; Barbara Kolarik; Michal Spilak; Zorana Jovanovic Andersen; Anni Vibenholt; Thomas Ellermann; Lars Gunnarsen; Steffen Loft
Ground level ozone arises primarily from traffic, it is a powerful oxidant and its primary target organ is the lung. Most epidemiological studies reporting the health effects of ozone have estimated individual exposure from measurements obtained from outdoor monitors but surrogates of personal exposure may not adequately reflect personal exposures. Also, the main focus has been on infants and children. Our purpose was to assess associations between urban background ozone and indoor residential ozone levels as well as to investigate the effects of indoor residential ozone on lung function in 51 elderly non-smokers. Indoor ozone was measured passively in homes, while urban background outdoor ozone was monitored continuously at a fixed monitoring station located on the roof of the 20-m high university H.C. Ørsteds campus building in a park area. Lung function was measured at baseline as well as on three consecutive occasions, for each subject. The mean residential ozone levels were 1.33 ppb, and mean outdoor urban background levels were 27 ppb. Outdoor urban background ozone levels were not consistently associated with residential ozone. No significant changes in lung function were detected in association with residential ozone among healthy participants. In this study, we were unable to detect significant changes in lung function in association with increased levels of residential ozone amongst healthy elderly non-smokers.
Environmental and Molecular Mutagenesis | 2015
Peter Møller; Ditte Marie Jensen; Daniel Vest Christophersen; Ali Kermanizadeh; Nicklas Raun Jacobsen; Jette Gjerke Hemmingsen; Pernille Høgh Danielsen; Dorina Gabriela Karottki; Martin Roursgaard; Yi Cao; Kim Jantzen; Henrik Klingberg; Lars-Georg Hersoug; Steffen Loft