Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steffen Loft is active.

Publication


Featured researches published by Steffen Loft.


Journal of Molecular Medicine | 1996

Cancer risk and oxidative DNA damage in man.

Steffen Loft; Henrik E. Poulsen

In living cells reactive oxygen species (ROS) are formed continuously as a consequence of metabolic and other biochemical reactions as well as external factors. Some ROS have important physiological functions. Thus, antioxidant defense systems cannot provide complete protection from noxious effects of ROS. These include oxidative damage to DNA, which experimental studies in animals and in vitro have suggested are an important factor in carcinogenesis. Despite extensive repair oxidatively modified DNA is abundant in human tissues, in particular in tumors, i.e., in terms of 1–200 modified nucleosides per 105 intact nucleosides. The damaged nucleosides accumulate with age in both nuclear and mitochondrial DNA. The products of repair of these lesions are excreted into the urine in amounts corresponding to a damage rate of up to 104 modifications in each cell every day. The most abundant of these lesions, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), is also the most mutagenic, resulting in GT transversions which are frequently found in tumor relevant genes. A series of other oxidative modifications of base and sugar residues occur frequently in DNA, but they are less well studied and their biological significance less apparent. The biomarkers for study of oxidative DNA damage in humans include urinary excretion of oxidized nucleosides and bases as repair products and modifications in DNA isolated from target tissue or surrogate cells, such as lymphocytes. These biomarkers reflect the rate of damage and the balance between the damage and repair rate, respectively. By means of biomarkers a number of important factors have been studied in humans. Ionizing radiation, a carcinogenic and pure source of ROS, induced both urinary and leukocyte biomarkers of oxidative DNA damage. Tobacco smoking, another carcinogenic source of ROS, increased the oxidative DNA damage rate by 35–50% estimated from the urinary excretion of 8-oxodG, and the level of 8-oxodG in leukocytes by 20–50%. The main endogenous source of ROS, the oxygen consumption, showed a close correlation with the 8-oxodG excretion rate although moderate exercise appeared to have no immediate effect. So far, cross-sectional study of diet composition and intervention studies, including energy restriction and antioxidant supplements, have generally failed to show an influence on the oxidative DNA modification. However, a diet rich of Brussels sprouts reduced the oxidative DNA damage rate, estimated by the urinary excretion of 8-oxodG, and the intake of vitamin C was a determinant for the level of 8-oxodG in sperm DNA. A low-fat diet reduced another marker of oxidative DNA damage in leukocytes. In patients with diseases associated with a mechanistically based increased risk of cancer, including Fanconi anemia, chronic hepatitis, cystic fibrosis, and various autoimmune diseases, the biomarker studies indicate an increased rate of oxidative DNA damage or in some instances deficient repair. Human studies support the experimentally based notion of oxidative DNA damage as an important mutagenic and apparently carcinogenic factor. However, the proof of a causal relationship in humans is still lacking. This could possibly be supported by demonstration of the rate of oxidative DNA damage as an independent risk factor for cancer in a prospective study of biobank material using a nested case control design. In addition, oxidative damage may be important for the aging process, particularly with respect to mitochondrial DNA and the pathogenesis of inflammatory diseases.


Biochemical Pharmacology | 1993

Fluvoxamine is a potent inhibitor of cytochrome P4501A2

Kim Brøsen; Erik Skjelbo; Birgitte Buur Rasmussen; Henrik E. Poulsen; Steffen Loft

Fluvoxamine is a new antidepressant and selectively inhibits serotonin reuptake (SSRI). The present study demonstrates that fluvoxamine is a very potent inhibitor of the high-affinity O-deethylation of phenacetin, which is catalysed by cytochrome P4501A2 (CYP1A2), in microsomes from three human livers. Thus, the apparent inhibitor constant of fluvoxamine, Ki, ranged from 0.12 to 0.24 microM. Seven other SSRIs, citalopram, N-desmethylcitalopram, fluoxetine, norfluoxetine, paroxetine, sertraline and litoxetin either did not inhibit or were weak inhibitors of the O-deethylation of phenacetin. Our findings explain the mechanism of the pharmacokinetic interactions between fluvoxamine and drugs that are metabolized by CYP1A2, e.g. theophylline and imipramine.


Free Radical Research | 2010

Role of oxidative damage in toxicity of particulates.

Peter Møller; Nicklas Raun Jacobsen; Janne K. Folkmann; Pernille Høgh Danielsen; Lone Mikkelsen; Jette Gjerke Hemmingsen; Lise K. Vesterdal; Lykke Forchhammer; Håkan Wallin; Steffen Loft

Abstract Particulates are small particles of solid or liquid suspended in liquid or air. In vitro studies show that particles generate reactive oxygen species, deplete endogenous antioxidants, alter mitochondrial function and produce oxidative damage to lipids and DNA. Surface area, reactivity and chemical composition play important roles in the oxidative potential of particulates. Studies in animal models indicate that particles from combustion processes (generated by combustion of wood or diesel oil), silicate, titanium dioxide and nanoparticles (C60 fullerenes and carbon nanotubes) produce elevated levels of lipid peroxidation products and oxidatively damaged DNA. Biomonitoring studies in humans have shown associations between exposure to air pollution and wood smoke particulates and oxidative damage to DNA, deoxynucleotides and lipids measured in leukocytes, plasma, urine and/or exhaled breath. The results indicate that oxidative stress and elevated levels of oxidatively altered biomolecules are important intermediate endpoints that may be useful markers in hazard characterization of particulates.


European Journal of Clinical Pharmacology | 1996

Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine

U. Jeppesen; L. F. Gram; Kirsten Vistisen; Steffen Loft; Hemming Poulsen; Kim Brøsen

Objectives: The purpose of this pharmacokinetic study was to investigate the dose-dependent inhibition of model substrates for CYP2D6, CYP2C19 and CYP1A2 by four marketed selective serotonin reuptake inhibitors (SSRIs): citalopram, fluoxetine, fluvoxamine and paroxetine.Methods:The study was carried out as an in vivo single-dose study including 24 young, healthy men. All volunteers had been identified as sparteine- and mephenytoin-extensive metabolisers. The volunteers received in randomised order, at weekly intervals, increasing single oral doses of one of the four SSRIs, followed 3 h later by sparteine (CYP2D6), mephenytoin (CYP2C19) and caffeine (CYP1A2) tests. Fluoxetine was given at 3-week intervals because of the long half-life of fluoxetine and its metabolite norfluoxetine. Citalopram, fluoxetine and paroxetine were given in doses of 10, 20, 40 and 80 mg and fluvoxamine was given in doses of 25, 50, 100 and 200 mg.Results:With increasing doses, there was a statistically significant increase in the sparteine metabolic ratio (MR) (P < 0.01, Page’s test for trend) for all four SSRIs. The increase was modest after intake of citalopram and fluvoxamine, while the increase was more pronounced after fluoxetine intake, although no volunteers changed phenotype from extensive metabolisers to poor metabolisers. Three of the six volunteers changed phenotype from extensive metabolisers to poor metabolisers after intake of 40 or 80 mg paroxetine. There was a statistically significant increase in the mephenytoin S/R ratio (P < 0.01, Page’s test for trend) with increasing doses of fluoxetine and fluvoxamine, but not after citalopram and paroxetine. However, no volunteers changed phenotype from extensive to poor metabolisers of S-mephenytoin. After intake of fluvoxamine, the urinary excretion of the metabolites related to N3 demethylation of caffeine were below the limit of quantification, whereas there were no significant changes in the urinary caffeine metabolic ratios after intake of the other three SSRIs.Conclusion:This investigation confirms that paroxetine and fluoxetine are potent inhibitors of CYP2D6, that fluvoxamine and fluoxetine are moderate inhibitors of CYP2C19 and that fluvoxamine is a potent inhibitor of CYP1A2 in humans in vivo. The clinical prediction of interaction from single-dose experiments may have to take the degree of accumulation during steady-state after multiple doses into account.


Environmental and Molecular Mutagenesis | 2008

Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C60 fullerenes in the FE1-Muta™Mouse lung epithelial cells

Nicklas Raun Jacobsen; Giulio Pojana; Paul A. White; Peter Møller; Corey Alexander Cohn; Karen Smith Korsholm; Ulla Vogel; Antonio Marcomini; Steffen Loft; Håkan Wallin

Viability, cell cycle effects, genotoxicity, reactive oxygen species production, and mutagenicity of C60 fullerenes (C60) and single‐walled carbon nanotubes (SWCNT) were assessed in the FE1‐Muta™Mouse lung epithelial cell line. None of these particles induced cell death within 24 hr at doses between 0 and 200 μg/ml or during long‐term subculture exposure (576 hr) at 100 μg/ml, as determined by two different assays. However, cell proliferation was slower with SWCNT exposure and a larger fraction of the cells were in the G1 phase. Exposure to carbon black resulted in the greatest reactive oxygen species generation followed by SWCNT and C60 in both cellular and cell‐free particle suspensions. C60 and SWCNT did not increase the level of strand breaks, but significantly increased the level of FPG sensitive sites/oxidized purines (22 and 56%, respectively) determined by the comet assay. The mutant frequency in the cII gene was unaffected by 576 hr of exposure to either 100 μg/ml C60 or SWCNT when compared with control incubations, whereas we have previously reported that carbon black and diesel exhaust particles induce mutations using an identical exposure scenario. These results indicate that SWCNT and C60 are less genotoxic in vitro than carbon black and diesel exhaust particles. Environ. Mol. Mutagen., 2008.


Particle and Fibre Toxicology | 2009

Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE -/- mice

Nicklas Raun Jacobsen; Peter Møller; Keld Alstrup Jensen; Ulla Vogel; Ole Ladefoged; Steffen Loft; Håkan Wallin

BackgroundThe toxic and inflammatory potential of 5 different types of nanoparticles were studied in a sensitive model for pulmonary effects in apolipoprotein E knockout mice (ApoE-/-). We studied the effects instillation or inhalation Printex 90 of carbon black (CB) and compared CB instillation in ApoE-/- and C57 mice. Three and 24 h after pulmonary exposure, inflammation was assessed by mRNA levels of cytokines in lung tissue, cell composition, genotoxicity, protein and lactate dehydrogenase activity in broncho-alveolar lavage (BAL) fluid.ResultsFirstly, we found that intratracheal instillation of CB caused far more pulmonary toxicity in ApoE-/- mice than in C57 mice. Secondly, we showed that instillation of CB was more toxic than inhalation of a presumed similar dose with respect to inflammation in the lungs of ApoE-/- mice. Thirdly, we compared effects of instillation in ApoE-/- mice of three carbonaceous particles; CB, fullerenes C60 (C60) and single walled carbon nanotubes (SWCNT) as well as gold particles and quantum dots (QDs). Characterization of the instillation media revealed that all particles were delivered as agglomerates and aggregates. Significant increases in Il-6, Mip-2 and Mcp-1 mRNA were detected in lung tissue, 3 h and 24 h following instillation of SWCNT, CB and QDs. DNA damage in BAL cells, the fraction of neutrophils in BAL cells and protein in BAL fluid increased statistically significantly. Gold and C60 particles caused much weaker inflammatory responses.ConclusionOur data suggest that ApoE-/- model is sensitive for evaluating particle induced inflammation. Overall QDs had greatest effects followed by CB and SWCNT with C60 and gold being least inflammatory and DNA-damaging. However the gold was used at a much lower mass dose than the other particles. The strong effects of QDs were likely due to Cd release. The surface area of the instilled dose correlated well the inflammatory response for low toxicity particles.


Environmental Health Perspectives | 2005

Personal exposure to ultrafine particles and oxidative DNA damage.

Peter S. Vinzents; Peter Møller; Mette Sørensen; Lisbeth E. Knudsen; Ole Hertel; Finn Palmgren Jensen; Bente Schibye; Steffen Loft

Exposure to ultrafine particles (UFPs) from vehicle exhaust has been related to risk of cardiovascular and pulmonary disease and cancer, even though exposure assessment is difficult. We studied personal exposure in terms of number concentrations of UFPs in the breathing zone, using portable instruments in six 18-hr periods in 15 healthy nonsmoking subjects. Exposure contrasts of outdoor pollution were achieved by bicycling in traffic for 5 days and in the laboratory for 1 day. Oxidative DNA damage was assessed as strand breaks and oxidized purines in mononuclear cells isolated from venous blood the morning after exposure measurement. Cumulated outdoor and cumulated indoor exposures to UFPs each were independent significant predictors of the level of purine oxidation in DNA but not of strand breaks. Ambient air concentrations of particulate matter with an aero-dynamic diameter of ≤10 μm (PM10), nitrous oxide, nitrogen dioxide, carbon monoxide, and/or number concentration of UFPs at urban background or busy street monitoring stations was not a significant predictor of DNA damage, although personal UFP exposure was correlated with urban background concentrations of CO and NO2, particularly during bicycling in traffic. The results indicate that biologic effects of UFPs occur at modest exposure, such as that occurring in traffic, which supports the relationship of UFPs and the adverse health effects of air pollution.


Journal of Toxicology and Environmental Health | 1993

8‐hydroxydeoxyguanosine as a urinary biomarker of oxidative DNA damage

Steffen Loft; Anne Fischer-Nielsen; Inge Bøgh Jeding; Kirsten Vistisen; Henrik E. Poulsen

Living organisms are continuously exposed to reactive oxygen species as a consequence of biochemical reactions as well as external factors. Oxidative DNA damage has been implicated in aging, carcinogenesis and other degenerative diseases. The urinary excretion of the DNA repair product 8-hydroxydeoxyguanosine (8OHdG) has been proposed as a noninvasive biomarker of oxidative DNA damage in humans in vivo. We have developed a three-dimensional HPLC analysis with electrochemical detection for the analysis of 8OHdG in urine and studied factors affecting the excretion of this biomarker in 83 healthy humans and in various laboratory animals, including dog, pig, and rat. Previously, other groups have used comparable HPLC methods or gas chromatography-mass spectrometry with selective ion monitoring for measuring the excretion of 8OHdG in humans, rats, mice, and monkeys. In the 169 humans studied so far, the average 8OHdG excretion was 200-300 pmol/kg per 24 h with a sevenfold range, and the coefficient of variation was 30-40%. This excretion corresponds 140-200 oxidative modification of guanine bases per cell per day. Thirty-two smokers from our study population excreted 50% (31-69%; 95% confidence interval) more 8OHdG than 53 nonsmokers. This indicates a 50% increased rate of oxidative DNA damage from smoking, adding to the other well-known health hazards of smoking. The biochemical-physiological basis is unknown but may be related to smoke constituents including or generating reactive oxygen species and/or consuming antioxidants and/or the well-known enhancing effect of smoking on the metabolic rate. In our 83 healthy subjects the 8OHdG excretion correlated with body composition. Thus, lean and/or male subjects excreted more than obese and/or female subjects, possibly related to differences in metabolic rate. In accordance, the excretion of 8OHdG decreased after calorie restriction, which will cause a decline in the metabolic rate. Across the investigated species, humans, dogs, pigs, and rats, the excretion of 8OHdG correlated with the specific metabolic rate, confirming data from other groups on humans, monkeys, rats, and mice. The excretion of 8OHdG decreased with age in rats in parallel with the decline in metabolic rate with advancing age. The excretion of 8OHdG reflects the formation and repair of only one out of approximately 20 described oxidative DNA modifications. So far, methods are not available for the determination of the corresponding repair products, except 8OHdG and thymidine glycol, in urine. Moreover, the importance in terms of mutagenicity, particularly regarding tumour suppressor genes and oncogenes, is mainly documented for 8OHdG in DNA.(ABSTRACT TRUNCATED AT 400 WORDS)


Environmental Health Perspectives | 2007

Exposure to Ultrafine Particles from Ambient Air and Oxidative Stress–Induced DNA Damage

Elvira Vaclavik Bräuner; Lykke Forchhammer; Peter Møller; Jacob Simonsen; Marianne Glasius; Peter Wåhlin; Ole Raaschou-Nielsen; Steffen Loft

Background Particulate matter, especially ultrafine particles (UFPs), may cause health effects through generation of oxidative stress, with resulting damage to DNA and other macromolecules. Objective We investigated oxidative damage to DNA and related repair capacity in peripheral blood mononuclear cells (PBMCs) during controlled exposure to urban air particles with assignment of number concentration (NC) to four size modes with average diameters of 12, 23, 57, and 212 nm. Design Twenty-nine healthy adults participated in a randomized, two-factor cross-over study with or without biking exercise for 180 min and with exposure to particles (NC 6169-15362/cm3) or filtered air (NC 91-542/cm3) for 24 hr. Methods The levels of DNA strand breaks (SBs), oxidized purines as formamidopyrimidine DNA glycolase (FPG) sites, and activity of 7,8-dihydro-8-oxoguanine-DNA glycosylase (OGG1) in PBMCs were measured by the Comet assay. mRNA levels of OGG1, nucleoside diphosphate linked moiety X-type motif 1 (NUDT1), and heme oxygenase-1 (HO1) were determined by real-time reverse transcriptase–polymerase chain reaction. Results Exposure to UFPs for 6 and 24 hr significantly increased the levels of SBs and FPG sites, with a further insignificant increase after physical exercise. The OGG1 activity and expression of OGG1, NUDT1, and HO1 were unaltered. There was a significant dose–response relationship between NC and DNA damage, with the 57-nm mode as the major contributor to effects. Concomitant exposure to ozone, nitrogen oxides, and carbon monoxide had no influence. Conclusion Our results indicate that UFPs, especially the 57-nm soot fraction from vehicle emissions, causes systemic oxidative stress with damage to DNA and no apparent compensatory up-regulation of DNA repair within 24 hr.


Cancer Letters | 2008

Air pollution, oxidative damage to DNA, and carcinogenesis

Peter Møller; Janne Kjærsgaard Folkmann; Lykke Forchhammer; Elvira Vaclavik Bräuner; Pernille Høgh Danielsen; Lotte Risom; Steffen Loft

There is growing concern that air pollution exposure increases the risk of lung cancer. The mechanism of action is related to particle-induced oxidative stress and oxidation of DNA. Humans exposed to urban air with vehicle emissions have elevated levels of oxidized guanine bases in blood cells and urine. Animal experimental studies show that pulmonary and gastrointestinal exposure is associated with elevated levels of oxidized guanines in the lung and other organs. Collectively, there is evidence indicating that exposure to traffic-related air pollution particles is associated with oxidative damage to DNA and this might be associated with increased risk of cancer.

Collaboration


Dive into the Steffen Loft's collaboration.

Top Co-Authors

Avatar

Peter Møller

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulla Vogel

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Håkan Wallin

National Institute of Occupational Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge