Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Doris M. Jacobs is active.

Publication


Featured researches published by Doris M. Jacobs.


Talanta | 2006

Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms

Ziad Ramadan; Doris M. Jacobs; M. Grigorov; Sunil Kochhar

The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of (1)H nuclear magnetic resonance (NMR) metabonomic profiles, and to identify the metabolites that are responsible for the classification. Human plasma, urine, and saliva from a group of 150 healthy male and female subjects were subjected to (1)H NMR-based metabonomic analysis. The (1)H NMR spectra were analyzed using two pattern recognition methods, principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), to identify metabolites responsible for gender differences. The use of genetic algorithms (GA) for variable selection methods was found to enhance the classification performance of the PLS-DA models. The loading plots obtained by PCA and PLS-DA were compared and various metabolites were identified that are responsible for the observed separations. These results demonstrated that our approach is capable of identifying the metabolites that are important for the discrimination of classes of individuals of similar physiological conditions.


Molecular Nutrition & Food Research | 2009

The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics.

Ferdinand A. van Dorsten; Christian H. Grün; Ewoud J. J. van Velzen; Doris M. Jacobs; Richard Draijer; John van Duynhoven

The metabolic impact of polyphenol-rich red wine and grape juice consumption in humans was studied using a metabolomics approach. Fifty-eight men and women participated in a placebo-controlled, double-crossover study in which they consumed during a period of 4 wk, either a polyphenol-rich 2:1 dry mix of red wine and red grape juice extracts (MIX) or only a grape juice extract (GJX). Twenty-four-hour urine samples were collected after each intervention. (1)H NMR spectroscopy was applied for global metabolite profiling, while GC-MS was used for focused profiling of urinary phenolic acids. Urine metabolic profiles after intake of both polyphenol-rich extracts were significantly differentiated from placebo using multilevel partial least squares discriminant analysis. A significant 35% increase in hippuric acid excretion (p<0.001) in urine was measured after the MIX consumption as) or only a red grape juice dry extract (GJX). 24-h urine samples were collected after each intervention. 1H-NMR spectroscopy was applied for global metabolite profiling, while gas chromatography-mass spectrometry (GC-MS) was used for focused profiling of urinary phenolic acids. Urine metabolic profiles after intake of both polyphenol-rich extracts were significantly differentiated from placebo using multilevel partial least squares discriminant analysis (ML-PLS-DA). A significant 35% increase in hippuric acid excretion (p<0.001) in urine was measured after the MIX consumption compared with placebo, whereas no change was found after GJX consumption. GC-MS-based metabolomics of urine allowed identification of 18 different phenolic acids, which were significantly elevated following intake of either extract. Syringic acid, 3- and 4-hydroxyhippuric acid and 4-hydroxymandelic acid were the strongest urinary markers for both extracts. MIX and GJX consumption had a slightly different effect on the excreted phenolic acid profile and on endogenous metabolite excretion, possibly reflecting their different polyphenol composition.


Journal of Agricultural and Food Chemistry | 2010

In vitro bioconversion of polyphenols from black tea and red wine/grape juice by human intestinal microbiota displays strong interindividual variability

Gabriele Gross; Doris M. Jacobs; Sam Possemiers; John van Duynhoven; Elaine E. Vaughan; Tom Van de Wiele

Dietary polyphenols in tea and wine have been associated with beneficial health effects. After ingestion, most polyphenols are metabolized by the colonic microbiota. The current study aimed at exploring the interindividual variation of gut microbial polyphenol bioconversion from 10 healthy human subjects. In vitro fecal batch fermentations simulating conditions in the distal colon were performed using polyphenols from black tea and a mixture of red wine and grape juice. Microbial bioconversion was monitored by NMR- and GC-MS-based profiling of diverse metabolites and phenolics. The complex polyphenol mixtures were degraded to a limited number of key metabolites. Each subject displayed a specific metabolite profile differing in composition and time courses as well as levels of these metabolites. Moreover, clear differences depending on the polyphenol sources were observed. In conclusion, varying metabolite pathways among individuals result in different metabolome profiles and therefore related health effects are hypothesized to differ between subjects.


Journal of Proteome Research | 2009

Phenotyping Tea Consumers by Nutrikinetic Analysis of Polyphenolic End-Metabolites

Ewoud J. J. van Velzen; Johan A. Westerhuis; John van Duynhoven; Ferdi A. van Dorsten; Christian H. Grün; Doris M. Jacobs; Guus S. M. J. E. Duchateau; Daniel J. Vis; Age K. Smilde

An integration of metabolomics and pharmacokinetics (or nutrikinetics) is introduced as a concept to describe a human study population with different metabolic phenotypes following a nutritional intervention. The approach facilitates an unbiased analysis of the time-response of body fluid metabolites from crossover designed intervention trials without prior knowledge of the underlying metabolic pathways. The method is explained for the case of a human intervention study in which the nutrikinetic analysis of polyphenol-rich black tea consumption was performed in urine over a period of 48 h. First, multilevel PLS-DA analysis was applied to the urinary 1H NMR profiles to select the most differentiating biomarkers between the verum and placebo samples. Then, a one-compartment nutrikinetic model with first-order excretion, a lag time, and a baseline function was fitted to the time courses of these selected biomarkers. The nutrikinetic model used here fully exploits the crossover structure in the data by fitting the data from both the treatment period and the placebo period simultaneously. To demonstrate the procedure, a selected set of urinary biomarkers was used in the model fitting. These metabolites include hippuric acid, 4-hydroxyhippuric acid and 1,3-dihydroxyphenyl-2-O-sulfate and derived from microbial fermentation of polyphenols in the gut. Variations in urinary excretion between- and within the subjects were observed, and used to provide a phenotypic description of the test population.


Journal of Chromatography B | 2008

GC-MS methods for metabolic profiling of microbial fermentation products of dietary polyphenols in human and in vitro intervention studies

Christian H. Grün; Ferdi A. van Dorsten; Doris M. Jacobs; Marie Le Belleguic; Ewoud J. J. van Velzen; Max O. Bingham; Hans-Gerd Janssen; John van Duynhoven

Flavonoids, a subclass of polyphenols, are major constituents of many plant-based foods and beverages, including tea, wine and chocolate. Epidemiological studies have shown that a flavonoid-rich diet is associated with reduced risk of cardiovascular diseases. The majority of the flavonoids survive intact until they reach the colon where they are then extensively metabolized into smaller fragments. Here, we describe the development of GC-MS-based methods for the profiling of phenolic microbial fermentation products in urine, plasma, and fecal water. Furthermore, the methods are applicable for profiling products obtained from in vitro batch culture fermentation models. The methods incorporate enzymatic deconjugation, liquid-liquid extraction, derivatization, and subsequent analysis by GC-MS. At the level of individual compounds, the methods gave recoveries better than 80% with inter-day precision being better than 20%, depending on the matrix. Limits of detection were below 0.1 microg/ml for most phenolic acids. The newly developed methods were successfully applied to samples from human and in-vitro intervention trials, studying the metabolic impact of flavonoid intake. In conclusion, the methods presented are robust and generally applicable to diverse biological fluids. Its profiling character is useful to investigate on a large scale the gut microbiome-mediated bioavailability of flavonoids.


Journal of Agricultural and Food Chemistry | 2012

Impact of Short-Term Intake of Red Wine and Grape Polyphenol Extract on the Human Metabolome

Doris M. Jacobs; J.C. Fuhrmann; F.A. van Dorsten; D. Rein; E.J.J. van Velzen; Boudewijn Hollebrands; Richard Draijer; J.P.M. van Duynhoven; Ursula Garczarek

Red wine and grape polyphenols are considered to promote cardiovascular health and are involved in multiple biological functions. Their overall impact on the human metabolome is not known. Therefore, exogenous and endogenous metabolic effects were determined in fasting plasma and 24 h urine from healthy male adults consuming a mix of red wine and grape juice extracts (WGM) for 4 days in a placebo-controlled, crossover study. Syringic acid, 3-hydroxyhippuric acid, pyrogallol, 3-hydroxyphenylacetic acid, and 3-hydroxyphenylpropionic acid were confirmed as the strongest urinary markers of WGM intake. Overall, WGM had a mild impact on the endogenous metabolism. Most noticeable were changes in several amino acids deriving from tyrosine and tryptophan. Reductions in the microbial metabolites p-cresol sulfate and 3-indoxylsulfuric acid and increases in indole-3-lactic acid and nicotinic acid were observed in urine. In plasma, tyrosine was reduced. The results suggest that short-term intake of WGM altered microbial protein fermentation and/or amino acid metabolism.


The American Journal of Clinical Nutrition | 2013

Interactions of black tea polyphenols with human gut microbiota: implications for gut and cardiovascular health

John van Duynhoven; Elaine E. Vaughan; Ferdi A. van Dorsten; Victoria Gomez-Roldan; Ric C. H. de Vos; Jacques Vervoort; Justin Jj van der Hooft; Laure C. Roger; Richard Draijer; Doris M. Jacobs

Epidemiologic studies have convincingly associated consumption of black tea with reduced cardiovascular risk. Research on the bioactive molecules has traditionally been focused on polyphenols, such as catechins. Black tea polyphenols (BTPs), however, mainly consist of high-molecular-weight species that predominantly persist in the colon. There, they can undergo a wide range of bioconversions by the resident colonic microbiota but can in turn also modulate gut microbial diversity. The impact of BTPs on colon microbial composition can now be assessed by microbiomics technologies. Novel metabolomics platforms coupled to de novo identification are currently available to cover the large diversity of BTP bioconversions by the gut microbiota. Nutrikinetic modeling has been proven to be critical for defining nutritional phenotypes related to gut microbial bioconversion capacity. The bioactivity of circulating metabolites has been studied only to a certain extent. Bioassays dedicated to specific aspects of gut and cardiovascular health have been used, although often at physiologically irrelevant concentrations and with limited coverage of relevant metabolite classes and their conjugated forms. Evidence for cardiovascular benefits of BTPs points toward antiinflammatory and blood pressure-lowering properties and improvement in platelet and endothelial function for specific microbial bioconversion products. Clearly, more work is needed to fill in existing knowledge gaps and to assess the in vitro and in vivo bioactivity of known and newly identified BTP metabolites. It is also of interest to assess how phenotypic variation in gut microbial BTP bioconversion capacity relates to gut and cardiovascular health predisposition.


Omics A Journal of Integrative Biology | 2012

Gender-dependent associations of metabolite profiles and body fat distribution in a healthy population with central obesity: towards metabolomics diagnostics

Ewa Szymańska; Jildau Bouwman; Katrin Strassburg; Jacques Vervoort; A.J. Kangas; P. Soininen; M. Ala-Korpela; Johan A. Westerhuis; J.P.M. van Duynhoven; David J. Mela; Ian A. Macdonald; R. Vreeken; Age K. Smilde; Doris M. Jacobs

Obesity is a risk factor for cardiovascular diseases and type 2 diabetes especially when the fat is accumulated to central depots. Novel biomarkers are crucial to develop diagnostics for obesity and related metabolic disorders. We evaluated the associations between metabolite profiles (136 lipid components, 12 lipoprotein subclasses, 17 low-molecular-weight metabolites, 12 clinical markers) and 28 phenotype parameters (including different body fat distribution parameters such as android (A), gynoid (G), abdominal visceral (VAT), subcutaneous (SAT) fat) in 215 plasma/serum samples from healthy overweight men (n=32) and women (n=83) with central obesity. (Partial) correlation analysis and partial least squares (PLS) regression analysis showed that only specific metabolites were associated to A:G ratio, VAT, and SAT, respectively. These association patterns were gender dependent. For example, insulin, cholesterol, VLDL, and certain triacylglycerols (TG 54:1-3) correlated to VAT in women, while in men VAT was associated with TG 50:1-5, TG 55:1, phosphatidylcholine (PC 32:0), and VLDL ((X)L). Moreover, multiple regression analysis revealed that waist circumference and total fat were sufficient to predict VAT and SAT in women. In contrast, only VAT but not SAT could be predicted in men and only when plasma metabolites were included, with PC 32:0 being most strongly associated with VAT. These findings collectively highlight the potential of metabolomics in obesity and that gender differences need to be taken into account for novel biomarker and diagnostic discovery for obesity and metabolic disorders.


Metabolomics | 2012

Between Metabolite Relationships: an essential aspect of metabolic change

J. Jansen; Ewa Szymańska; Huub C. J. Hoefsloot; Doris M. Jacobs; Katrin Strassburg; Age K. Smilde

Not only the levels of individual metabolites, but also the relations between the levels of different metabolites may indicate (experimentally induced) changes in a biological system. Component analysis methods in current ‘standard’ use for metabolomics, such as Principal Component Analysis (PCA), do not focus on changes in these relations. We therefore propose the concept of ‘Between Metabolite Relationships’ (BMRs): common changes in the covariance (or correlation) between all metabolites in an organism. Such structural changes may indicate metabolic change brought about by experimental manipulation but which are lost with standard data analysis methods. These BMRs can be analysed by the INdividual Differences SCALing (INDSCAL) method. First the BMR quantification is described and subsequently the INDSCAL method. Finally, two studies illustrate the power and the applicability of BMRs in metabolomics. The first study is about the induced plant response of cabbage to herbivory, of which BMRs are a considerable part. In the second study—a human nutritional intervention study of green tea extract—standard data analysis tools did not reveal any metabolic change, although the BMRs were considerably affected. The presented results show that BMRs can be easily implemented in a wide variety of metabolomic studies. They provide a new source of information to describe biological systems in a way that fits flawlessly into the next generation of systems biology questions, dealing with personalized responses.


Journal of Proteome Research | 2014

Rapid and Sustained Systemic Circulation of Conjugated Gut Microbial Catabolites after Single-Dose Black Tea Extract Consumption

John van Duynhoven; Justin J. J. van der Hooft; Ferdinand A. van Dorsten; Martin Foltz; Victoria Gomez-Roldan; Jacques Vervoort; Ric C. H. de Vos; Doris M. Jacobs

Gut microbial catabolites of black tea polyphenols (BTPs) have been proposed to exert beneficial cardiovascular bioactivity. This hypothesis is difficult to verify because the conjugation patterns and pharmacokinetics of these catabolites are largely unknown. The objective of our study was to identify, quantify, and assess the pharmacokinetics of conjugated BTP metabolites in plasma of healthy humans by means of an a priori untargeted LC-MS-based metabolomics approach. In a randomized, open, placebo-controlled, crossover study, 12 healthy men consumed a single bolus of black tea extract (BTE) or a placebo. The relative and, in several cases, absolute concentrations of a wide range of metabolites were determined using U(H)PLC-LTQ-Orbitrap-FTMS. Following BTE consumption, a kinetic response in plasma was observed for 59 BTP metabolites, 11 of these in a quantitative manner. Conjugated and unconjugated catechins appeared in plasma without delay, at 2-4 h, followed by a range of microbial catabolites. Interindividual variation in response was greater for gut microbial catabolites than for directly absorbed BTPs. The rapid and sustained circulation of conjugated catabolites suggests that these compounds may be particularly relevant to proposed health benefits of BTE. Their presence and effects may depend on individual variation in catabolic capacity of the gut microbiota.

Collaboration


Dive into the Doris M. Jacobs's collaboration.

Top Co-Authors

Avatar

John van Duynhoven

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.P.M. van Duynhoven

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Velitchka V. Mihaleva

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jacques Vervoort

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elaine E. Vaughan

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge