Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Doron Kabaso is active.

Publication


Featured researches published by Doron Kabaso.


The Scientific World Journal | 2012

Erratum to “Fusion Pore Diameter Regulation by Cations Modulating Local Membrane Anisotropy”.

Doron Kabaso; Ana I. Calejo; Jernej Jorgačevski; Marko Kreft; Robert Zorec; Aleš Iglič

1 Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia 2 Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia 3 Departamento de Biologia e CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal 4 Celica Biomedical Center, Tehnoloski Park 24, 1000 Ljubljana, Slovenia 5 Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia


International Journal of Nanomedicine | 2011

Adhesion of osteoblasts to a nanorough titanium implant surface

Ekaterina Gongadze; Doron Kabaso; Sebastian Bauer; Tomaž Slivnik; Patrik Schmuki; Ursula van Rienen; Aleš Iglič

This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts.


Biophysical Journal | 2010

Curling and Local Shape Changes of Red Blood Cell Membranes Driven by Cytoskeletal Reorganization

Doron Kabaso; Roie Shlomovitz; Thorsten Auth; Virgilio L. Lew; Nir S. Gov

Human red blood cells (RBCs) lack the actin-myosin-microtubule cytoskeleton that is responsible for shape changes in other cells. Nevertheless, they can display highly dynamic local deformations in response to external perturbations, such as those that occur during the process of apical alignment preceding merozoite invasion in malaria. Moreover, after lysis in divalent cation-free media, the isolated membranes of ruptured ghosts show spontaneous inside-out curling motions at the free edges of the lytic hole, leading to inside-out vesiculation. The molecular mechanisms that drive these rapid shape changes are unknown. Here, we propose a molecular model in which the spectrin filaments of the RBC cortical cytoskeleton control the sign and dynamics of membrane curvature depending on whether the ends of the filaments are free or anchored to the bilayer. Computer simulations of the model reveal that curling, as experimentally observed, can be obtained either by an overall excess of weakly-bound filaments throughout the cell, or by the flux of such filaments toward the curling edges. Divalent cations have been shown to arrest the curling process, and Ca2+ ions have also been implicated in local membrane deformations during merozoite invasion. These effects can be replicated in our model by attributing the divalent cation effects to increased filament-membrane binding. This process converts the curl-inducing loose filaments into fully bound filaments that arrest curling. The same basic mechanism can be shown to account for Ca2+-induced local and dynamic membrane deformations in intact RBCs. The implications of these results in terms of RBC membrane dynamics under physiological, pathological, and experimental conditions is discussed.


Computer Methods in Biomechanics and Biomedical Engineering | 2011

Mechanics and electrostatics of the interactions between osteoblasts and titanium surface.

Doron Kabaso; Ekaterina Gongadze; Šárka Perutková; C. Matschegewski; Veronika Kralj-Iglič; Ulrich Beck; U. van Rienen; Aleš Iglič

Due to oxidation and adsorption of chloride and hydroxyl anions, the surface of titanium (Ti) implants is negatively charged. A possible mechanism of the attractive interaction between the negatively charged Ti surface and the negatively charged osteoblasts is described theoretically. It is shown that adhesion of positively charged proteins with internal charge distribution may give rise to attractive interaction between the Ti surface and the osteoblast membrane. A dynamic model of the osteoblast attachment is presented in order to study the impact of geometrically structured Ti surfaces on the osteoblasts attachment. It is indicated that membrane-bound protein complexes (PCs) may increase the membrane protrusion growth between the osteoblast and the grooves on titanium (Ti) surface and thereby facilitate the adhesion of osteoblasts to the Ti surface. On the other hand, strong local adhesion due to electrostatic forces may locally trap the osteoblast membrane and hinder the further spreading of osteointegration boundary. We suggest that the synergy between these two processes is responsible for successful osteointegration along the titanium surface implant.


PLOS Computational Biology | 2011

Theoretical model for cellular shapes driven by protrusive and adhesive forces.

Doron Kabaso; Roie Shlomovitz; Kathrin Schloen; Theresia E. B. Stradal; Nir S. Gov

The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix.


Mini-reviews in Medicinal Chemistry | 2013

Adhesion of Osteoblasts to a Vertically Aligned TiO2 Nanotube Surface

Ekaterina Gongadze; Doron Kabaso; Sebastian Bauer; Jung Park; Patrik Schmuki; Aleš Iglič

The adhesion of cells to vertically aligned TiO2 nanotubes is reviewed. The attraction between a negatively charged nanotube surface and a negatively charged osteoblast is facilitated by charged protein-mediators like proteins with a quadrupolar internal charge distribution, fibronectin and vitronectin. It is shown that adhesion and spreading of osteoblasts on vertically aligned TiO2 nanotube surfaces depend on the diameter of the nanotubes. Apparently, a small diameter nanotube surface has on average more sharp convex edges per unit area than a large one, leading to stronger binding affinity on its surface.


International Journal of Nanomedicine | 2012

The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes

Maruša Lokar; Doron Kabaso; Nataša Resnik; Kristina Sepčić; Veronika Kralj-Iglič; Peter Veranič; Robert Zorec; Aleš Iglič

Intercellular membrane nanotubes (ICNs) are highly curved tubular structures that connect neighboring cells. The stability of these structures depends on the inner cytoskeleton and the cell membrane composition. Yet, due to the difficulty in the extraction of ICNs, the cell membrane composition remains elusive. In the present study, a raft marker, ostreolysin, revealed the enrichment of cholesterol-sphingomyelin membrane nanodomains along ICNs in a T24 (malignant) urothelial cancer cell line. Cholesterol depletion, due to the addition of methyl-β-cyclodextrin, caused the dispersion of cholesterol-sphingomyelin membrane nanodomains and the retraction of ICNs. The depletion of cholesterol also led to cytoskeleton reorganization and to formation of actin stress fibers. Live cell imaging data revealed the possible functional coupling between the change from polygonal to spherical shape, cell separation, and the disconnection of ICNs. The ICN was modeled as an axisymmetric tubular structure, enabling us to investigate the effects of cholesterol content on the ICN curvature. The removal of cholesterol was predicted to reduce the positive spontaneous curvature of the remaining membrane components, increasing their curvature mismatch with the tube curvature. The mechanisms by which the increased curvature mismatch could contribute to the disconnection of ICNs are discussed.


International Journal of Nanomedicine | 2011

Temperature and cholera toxin B are factors that influence formation of membrane nanotubes in RT4 and T24 urothelial cancer cell lines.

Doron Kabaso; Maruša Lokar; Veronika Kralj-Iglič; Peter Veranič; Alessandro Iglic

The growth of membrane nanotubes is crucial for intercellular communication in both normal development and pathological conditions. Therefore, identifying factors that influence their stability and formation are important for both basic research and in development of potential treatments of pathological states. Here we investigate the effect of cholera toxin B (CTB) and temperature on two pathological model systems: urothelial cell line RT4, as a model system of a benign tumor, and urothelial cell line T24, as a model system of a metastatic tumor. In particular, the number of intercellular membrane nanotubes (ICNs; ie, membrane nanotubes that bridge neighboring cells) was counted. In comparison with RT4 cells, we reveal a significantly higher number in the density of ICNs in T24 cells not derived from RT4 without treatments (P = 0.005), after 20 minutes at room temperature (P = 0.0007), and following CTB treatment (P = 0.000025). The binding of CTB to GM1–lipid complexes in membrane exvaginations or tips of membrane nanotubes may reduce the positive spontaneous (intrinsic) curvature of GM1–lipid complexes, which may lead to lipid mediated attractive interactions between CTB–GM1–lipid complexes, their aggregation and consequent formation of enlarged spherical tips of nanotubes. The binding of CTB to GM1 molecules in the outer membrane leaflet of membrane exvaginations and tips of membrane nanotubes may also increase the area difference between the two leaflets and in this way facilitate the growth of membrane nanotubes.


Mini-reviews in Medicinal Chemistry | 2011

Attachment of Rod-Like (BAR) Proteins and Membrane Shape

Doron Kabaso; Ekaterina Gongadze; Patrick Elter; U. van Rienen; Jan Gimsa; Veronika Kralj-Iglič; Aleš Iglič

Previous studies have shown that cellular function depends on rod-like membrane proteins, among them Bin/Amphiphysin/Rvs (BAR) proteins may curve the membrane leading to physiologically important membrane invaginations and membrane protrusions. The membrane shaping induced by BAR proteins has a major role in various biological processes such as cell motility and cell growth. Different models of binding of BAR domains to the lipid bilayer are described. The binding includes hydrophobic insertion loops and electrostatic interactions between basic amino acids at the concave region of the BAR domain and negatively charged lipids. To shed light on the elusive binding dynamics, a novel experiment is proposed to expand the technique of single-molecule AFM for the traction of binding energy of a single BAR domain.


Journal of Biomechanics | 2012

On the role of membrane anisotropy and BAR proteins in the stability of tubular membrane structures

Doron Kabaso; Nataliya Bobrovska; Wojciech Góźdź; Nir S. Gov; Veronika Kralj-Iglič; Peter Veranič; Aleš Iglič

Recent studies have demonstrated that actin filaments are not crucial for the short-term stability of tubular membrane protrusions originating from the cell surface. It has also been demonstrated that prominin nanodomains and curvature inducing I-BAR proteins could account for the stability of the membrane protrusion. Here we constructed an axisymmetric model of a membrane protrusion that excludes actin filaments in order to investigate the contributions of prominin nanodomains (rafts) and I-BAR proteins to the membrane protrusion stability. It was demonstrated that prominin nanodomains and I-BAR proteins can stabilize the membrane protrusion only over a specific range of spontaneous curvature. On the other hand, high spontaneous curvature and/or high density of I-BAR proteins could lead to system instability and to non-uniform contraction in the radial direction of the membrane protrusion. In agreement with previous studies, it was also shown that the isotropic bending energy of lipids is not sufficient to explain the stability of the observed tubular membrane protrusion without actin filaments.

Collaboration


Dive into the Doron Kabaso's collaboration.

Top Co-Authors

Avatar

Aleš Iglič

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Zorec

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marko Kreft

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nir S. Gov

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roie Shlomovitz

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge