Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ekaterina Gongadze is active.

Publication


Featured researches published by Ekaterina Gongadze.


Nanotechnology | 2015

Titanium nanostructures for biomedical applications

Mukta Kulkarni; Anca Mazare; Ekaterina Gongadze; Šárka Perutková; Veronika Kralj-Iglič; Ingrid Milošev; Patrik Schmuki; Aleš Iglič; Miran Mozetič

Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.


International Journal of Nanomedicine | 2011

Adhesion of osteoblasts to a nanorough titanium implant surface

Ekaterina Gongadze; Doron Kabaso; Sebastian Bauer; Tomaž Slivnik; Patrik Schmuki; Ursula van Rienen; Aleš Iglič

This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts.


Bioelectrochemistry | 2010

Excluded volume effect and orientational ordering near charged surface in solution of ions and Langevin dipoles

Aleš Iglič; Ekaterina Gongadze; Klemen Bohinc

The influence of a finite volume of ions and orientational ordering of water Langevin dipoles on the dielectric permittivity profile in the vicinity of charged surface is studied theoretically via a numerical solution of the modified Poisson-Boltzmann equation. It is shown that the dielectric permittivity profile close to the charged surface is mainly determined by two mechanisms; specifically, the depletion of dipoles at the charged surface due to accumulated counterions and the increased orientational ordering of the water dipoles.


Bioelectrochemistry | 2012

Decrease of permittivity of an electrolyte solution near a charged surface due to saturation and excluded volume effects

Ekaterina Gongadze; Aleš Iglič

The dipole moment of a water molecule in liquid water differs from that of an isolated one because each molecule is further polarized by the electric field of its neighbours. In this work a formula for the spatial dependence of the relative permittivity of an electrolyte near a highly charged surface is obtained in which the mutual influence of the water molecules is taken into account by means of the cavity field. The orientational ordering of water dipoles is considered in the saturation regime. It is predicted that the relative permittivity of an electrolyte solution near the highly charged surface (i.e. in saturation regime) may be substantially decreased due to orientational ordering of water (saturation effect) and depletion of water molecules (excluded volume effect) due to accumulation of counterions.


Computer Methods in Biomechanics and Biomedical Engineering | 2011

Mechanics and electrostatics of the interactions between osteoblasts and titanium surface.

Doron Kabaso; Ekaterina Gongadze; Šárka Perutková; C. Matschegewski; Veronika Kralj-Iglič; Ulrich Beck; U. van Rienen; Aleš Iglič

Due to oxidation and adsorption of chloride and hydroxyl anions, the surface of titanium (Ti) implants is negatively charged. A possible mechanism of the attractive interaction between the negatively charged Ti surface and the negatively charged osteoblasts is described theoretically. It is shown that adhesion of positively charged proteins with internal charge distribution may give rise to attractive interaction between the Ti surface and the osteoblast membrane. A dynamic model of the osteoblast attachment is presented in order to study the impact of geometrically structured Ti surfaces on the osteoblasts attachment. It is indicated that membrane-bound protein complexes (PCs) may increase the membrane protrusion growth between the osteoblast and the grooves on titanium (Ti) surface and thereby facilitate the adhesion of osteoblasts to the Ti surface. On the other hand, strong local adhesion due to electrostatic forces may locally trap the osteoblast membrane and hinder the further spreading of osteointegration boundary. We suggest that the synergy between these two processes is responsible for successful osteointegration along the titanium surface implant.


Mini-reviews in Medicinal Chemistry | 2013

Adhesion of Osteoblasts to a Vertically Aligned TiO2 Nanotube Surface

Ekaterina Gongadze; Doron Kabaso; Sebastian Bauer; Jung Park; Patrik Schmuki; Aleš Iglič

The adhesion of cells to vertically aligned TiO2 nanotubes is reviewed. The attraction between a negatively charged nanotube surface and a negatively charged osteoblast is facilitated by charged protein-mediators like proteins with a quadrupolar internal charge distribution, fibronectin and vitronectin. It is shown that adhesion and spreading of osteoblasts on vertically aligned TiO2 nanotube surfaces depend on the diameter of the nanotubes. Apparently, a small diameter nanotube surface has on average more sharp convex edges per unit area than a large one, leading to stronger binding affinity on its surface.


General Physiology and Biophysics | 2011

Langevin Poisson-Boltzmann equation: point-like ions and water dipoles near a charged surface.

Ekaterina Gongadze; van Rienen U; Kralj-Iglič; Iglič A

Water ordering near a charged membrane surface is important for many biological processes such as binding of ligands to a membrane or transport of ions across it. In this work, the mean-field Poisson-Boltzmann theory for point-like ions, describing an electrolyte solution in contact with a planar charged surface, is modified by including the orientational ordering of water. Water molecules are considered as Langevin dipoles, while the number density of water is assumed to be constant everywhere in the electrolyte solution. It is shown that the dielectric permittivity of an electrolyte close to a charged surface is decreased due to the increased orientational ordering of water dipoles. The dielectric permittivity close to the charged surface is additionally decreased due to the finite size of ions and dipoles.


Cellular & Molecular Biology Letters | 2011

Generalized stern models of the electric double layer considering the spatial variation of permittvity and finite size of ions in saturation regime

Ekaterina Gongadze; Ursula van Rienen; Aleš Iglič

The interaction between a charged metal implant surface and a surrounding body fluid (electrolyte solution) leads to ion redistribution and thus to formation of an electrical double layer (EDL). The physical properties of the EDL contribute essentially to the formation of the complex implant-biosystem interface. Study of the EDL began in 1879 by Hermann von Helmholtz and still today remains a scientific challenge. The present mini review is focused on introducing the generalized Stern theory of an EDL, which takes into account the orientational ordering of water molecules. To ascertain the plausibility of the generalized Stern models described, we follow the classical model of Stern and introduce two Langevin models for spatial variation of the relative permittivity for point-like and finite sized ions. We attempt to uncover the subtle interplay between water ordering and finite sized ions and their impact on the electric potential near the charged implant surface. Two complementary effects appear to account for the spatial dependency of the relative permittivity near the charged implant surface — the dipole moment vectors of water molecules are predominantly oriented towards the surface and water molecules are depleted due to the accumulation of counterions. At the end the expressions for relative permittivity in both Langevin models were generalized by also taking into account the cavity and reaction field.


Mini-reviews in Medicinal Chemistry | 2011

Attachment of Rod-Like (BAR) Proteins and Membrane Shape

Doron Kabaso; Ekaterina Gongadze; Patrick Elter; U. van Rienen; Jan Gimsa; Veronika Kralj-Iglič; Aleš Iglič

Previous studies have shown that cellular function depends on rod-like membrane proteins, among them Bin/Amphiphysin/Rvs (BAR) proteins may curve the membrane leading to physiologically important membrane invaginations and membrane protrusions. The membrane shaping induced by BAR proteins has a major role in various biological processes such as cell motility and cell growth. Different models of binding of BAR domains to the lipid bilayer are described. The binding includes hydrophobic insertion loops and electrostatic interactions between basic amino acids at the concave region of the BAR domain and negatively charged lipids. To shed light on the elusive binding dynamics, a novel experiment is proposed to expand the technique of single-molecule AFM for the traction of binding energy of a single BAR domain.


Chemistry and Physics of Lipids | 2014

Influence of nanoparticle-membrane electrostatic interactions on membrane fluidity and bending elasticity

Poornima Budime Santhosh; Aljaž Velikonja; Šárka Perutková; Ekaterina Gongadze; Mukta Kulkarni; Julia Genova; Kristina Eleršič; Aleš Iglič; Veronika Kralj-Iglič; Nataša Poklar Ulrih

The aim of this work is to investigate the effect of electrostatic interactions between the nanoparticles and the membrane lipids on altering the physical properties of the liposomal membrane such as fluidity and bending elasticity. For this purpose, we have used nanoparticles and lipids with different surface charges. Positively charged iron oxide (γ-Fe2O3) nanoparticles, neutral and negatively charged cobalt ferrite (CoFe2O4) nanoparticles were encapsulated in neutral lipid 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine lipid mixture. Membrane fluidity was assessed through the anisotropy measurements using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene. Though the interaction of both the types of nanoparticles reduced the membrane fluidity, the results were more pronounced in the negatively charged liposomes encapsulated with positively charged iron oxide nanoparticles due to strong electrostatic attractions. X-ray photoelectron spectroscopy results also confirmed the presence of significant quantity of positively charged iron oxide nanoparticles in negatively charged liposomes. Through thermally induced shape fluctuation measurements of the giant liposomes, a considerable reduction in the bending elasticity modulus was observed for cobalt ferrite nanoparticles. The experimental results were supported by the simulation studies using modified Langevin-Poisson-Boltzmann model.

Collaboration


Dive into the Ekaterina Gongadze's collaboration.

Top Co-Authors

Avatar

Aleš Iglič

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doron Kabaso

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrik Schmuki

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge