Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Doron Lancet is active.

Publication


Featured researches published by Doron Lancet.


Nature | 2010

The genome of a songbird.

Wesley C. Warren; David F. Clayton; Hans Ellegren; Arthur P. Arnold; LaDeana W. Hillier; Axel Künstner; Steve Searle; Simon White; Albert J. Vilella; Susan Fairley; Andreas Heger; Lesheng Kong; Chris P. Ponting; Erich D. Jarvis; Claudio V. Mello; Patrick Minx; Peter V. Lovell; Tarciso Velho; Margaret Ferris; Christopher N. Balakrishnan; Saurabh Sinha; Charles Blatti; Sarah E. London; Yun Li; Ya-Chi Lin; Julia M. George; Jonathan V. Sweedler; Bruce R. Southey; Preethi H. Gunaratne; M. G. Watson

The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken—the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.


American Journal of Human Genetics | 2001

A Missense Mutation in a Highly Conserved Region of CASQ2 Is Associated with Autosomal Recessive Catecholamine-Induced Polymorphic Ventricular Tachycardia in Bedouin Families from Israel

Elon Pras; Tsviya Olender; Nili Avidan; Edna Ben-Asher; Orna Man; Etgar Levy-Nissenbaum; Asad Khoury; Avraham Lorber; Boleslaw Goldman; Doron Lancet; Michael Eldar

Catecholamine-induced polymorphic ventricular tachycardia (PVT) is characterized by episodes of syncope, seizures, or sudden death, in response to physical activity or emotional stress. Two modes of inheritance have been described: autosomal dominant and autosomal recessive. Mutations in the ryanodine receptor 2 gene (RYR2), which encodes a cardiac sarcoplasmic reticulum (SR) Ca2+-release channel, were recently shown to cause the autosomal dominant form of the disease. In the present report, we describe a missense mutation in a highly conserved region of the calsequestrin 2 gene (CASQ2) as the potential cause of the autosomal recessive form. The CASQ2 protein serves as the major Ca2+ reservoir within the SR of cardiac myocytes and is part of a protein complex that contains the ryanodine receptor. The mutation, which is in full segregation in seven Bedouin families affected by the disorder, converts a negatively charged aspartic acid into a positively charged histidine, in a highly negatively charged domain, and is likely to exert its deleterious effect by disrupting Ca2+ binding.


Bioinformatics | 2005

Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification

Itai Yanai; Hila Benjamin; Michael Shmoish; Vered Chalifa-Caspi; Maxim Shklar; Ron Ophir; Arren Bar-Even; Shirley Horn-Saban; Marilyn Safran; Eytan Domany; Doron Lancet; Orit Shmueli

MOTIVATION Genes are often characterized dichotomously as either housekeeping or single-tissue specific. We conjectured that crucial functional information resides in genes with midrange profiles of expression. RESULTS To obtain such novel information genome-wide, we have determined the mRNA expression levels for one of the largest hitherto analyzed set of 62 839 probesets in 12 representative normal human tissues. Indeed, when using a newly defined graded tissue specificity index tau, valued between 0 for housekeeping genes and 1 for tissue-specific genes, genes with midrange profiles having 0.15< tau<0.85 were found to constitute >50% of all expression patterns. We developed a binary classification, indicating for every gene the I(B) tissues in which it is overly expressed, and the 12-I(B) tissues in which it shows low expression. The 85 dominant midrange patterns with I(B)=2-11 were found to be bimodally distributed, and to contribute most significantly to the definition of tissue specification dendrograms. Our analyses provide a novel route to infer expression profiles for presumed ancestral nodes in the tissue dendrogram. Such definition has uncovered an unsuspected correlation, whereby de novo enhancement and diminution of gene expression go hand in hand. These findings highlight the importance of gene suppression events, with implications to the course of tissue specification in ontogeny and phylogeny. AVAILABILITY All data and analyses are publically available at the GeneNote website, http://genecards.weizmann.ac.il/genenote/ and, GEO accession GSE803. CONTACT [email protected] SUPPLEMENTARY INFORMATION Four tables available at the above site.


Database | 2010

GeneCards Version 3: the human gene integrator

Marilyn Safran; Irina Dalah; Justin Alexander; Naomi Rosen; Tsippi Iny Stein; Michael Shmoish; Noam Nativ; Iris Bahir; Tirza Doniger; Hagit Krug; Alexandra Sirota-Madi; Tsviya Olender; Yaron Golan; Gil Stelzer; Arye Harel; Doron Lancet

GeneCards (www.genecards.org) is a comprehensive, authoritative compendium of annotative information about human genes, widely used for nearly 15 years. Its gene-centric content is automatically mined and integrated from over 80 digital sources, resulting in a web-based deep-linked card for each of >73 000 human gene entries, encompassing the following categories: protein coding, pseudogene, RNA gene, genetic locus, cluster and uncategorized. We now introduce GeneCards Version 3, featuring a speedy and sophisticated search engine and a revamped, technologically enabling infrastructure, catering to the expanding needs of biomedical researchers. A key focus is on gene-set analyses, which leverage GeneCards’ unique wealth of combinatorial annotations. These include the GeneALaCart batch query facility, which tabulates user-selected annotations for multiple genes and GeneDecks, which identifies similar genes with shared annotations, and finds set-shared annotations by descriptor enrichment analysis. Such set-centric features address a host of applications, including microarray data analysis, cross-database annotation mapping and gene-disorder associations for drug targeting. We highlight the new Version 3 database architecture, its multi-faceted search engine, and its semi-automated quality assurance system. Data enhancements include an expanded visualization of gene expression patterns in normal and cancer tissues, an integrated alternative splicing pattern display, and augmented multi-source SNPs and pathways sections. GeneCards now provides direct links to gene-related research reagents such as antibodies, recombinant proteins, DNA clones and inhibitory RNAs and features gene-related drugs and compounds lists. We also portray the GeneCards Inferred Functionality Score annotation landscape tool for scoring a gene’s functional information status. Finally, we delineate examples of applications and collaborations that have benefited from the GeneCards suite. Database URL: www.genecards.org


Nature Genetics | 2001

The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy

Iris Eisenberg; Nili Avidan; Tamara Potikha; Hagit Hochner; Miriam Chen; Tsviya Olender; Mark Barash; Moshe Shemesh; Menachem Sadeh; Gil Grabov-Nardini; Inna Shmilevich; Adam Friedmann; George Karpati; Walter G. Bradley; Lisa Baumbach; Doron Lancet; Edna Ben Asher; Jacques S. Beckmann; Zohar Argov; Stella Mitrani-Rosenbaum

Hereditary inclusion body myopathy (HIBM; OMIM 600737) is a unique group of neuromuscular disorders characterized by adult onset, slowly progressive distal and proximal weakness and a typical muscle pathology including rimmed vacuoles and filamentous inclusions. The autosomal recessive form described in Jews of Persian descent is the HIBM prototype. This myopathy affects mainly leg muscles, but with an unusual distribution that spares the quadriceps. This particular pattern of weakness distribution, termed quadriceps-sparing myopathy (QSM), was later found in Jews originating from other Middle Eastern countries as well as in non-Jews. We previously localized the gene causing HIBM in Middle Eastern Jews on chromosome 9p12–13 (ref. 5) within a genomic interval of about 700 kb (ref. 6). Haplotype analysis around the HIBM gene region of 104 affected people from 47 Middle Eastern families indicates one unique ancestral founder chromosome in this community. By contrast, single non-Jewish families from India, Georgia (USA) and the Bahamas, with QSM and linkage to the same 9p12–13 region, show three distinct haplotypes. After excluding other potential candidate genes, we eventually identified mutations in the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) gene in the HIBM families: all patients from Middle Eastern descent shared a single homozygous missense mutation, whereas distinct compound heterozygotes were identified in affected individuals of families of other ethnic origins. Our findings indicate that GNE is the gene responsible for recessive HIBM.


Origins of Life and Evolution of Biospheres | 2001

The lipid world.

Daniel Segrè; Dafna Ben-Eli; David W. Deamer; Doron Lancet

The continuity of abiotically formed bilayer membraneswith similar structures in contemporary cellular life,and the requirement for microenvironments in whichlarge and small molecules could be compartmentalized, support the idea that amphiphilic boundary structurescontributed to the emergence of life. As an extensionof this notion, we propose here a `Lipid Worldscenario as an early evolutionary step in theemergence of cellular life on Earth. This conceptcombines the potential chemical activities of lipidsand other amphiphiles, with their capacity to undergospontaneous self-organization into supramolecularstructures such as micelles and bilayers. Inparticular, the documented chemical rate enhancementswithin lipid assemblies suggest that energy-dependentsynthetic reactions could lead to the growth andincreased abundance of certain amphiphilic assemblies.We further propose that selective processes might acton such assemblies, as suggested by our computersimulations of mutual catalysis among amphiphiles. Asdemonstrated also by other researchers, such mutualcatalysis within random molecular assemblies couldhave led to a primordial homeostatic system displayingrudimentary life-like properties. Taken together,these concepts provide a theoretical framework, andsuggest experimental tests for a Lipid World model forthe origin of life.


PLOS Biology | 2004

Loss of Olfactory Receptor Genes Coincides with the Acquisition of Full Trichromatic Vision in Primates

Yoav Gilad; Victor Wiebe; Molly Przeworski; Doron Lancet; Svante Pääbo

Olfactory receptor (OR) genes constitute the molecular basis for the sense of smell and are encoded by the largest gene family in mammalian genomes. Previous studies suggested that the proportion of pseudogenes in the OR gene family is significantly larger in humans than in other apes and significantly larger in apes than in the mouse. To investigate the process of degeneration of the olfactory repertoire in primates, we estimated the proportion of OR pseudogenes in 19 primate species by surveying randomly chosen subsets of 100 OR genes from each species. We find that apes, Old World monkeys and one New World monkey, the howler monkey, have a significantly higher proportion of OR pseudogenes than do other New World monkeys or the lemur (a prosimian). Strikingly, the howler monkey is also the only New World monkey to possess full trichromatic vision, along with Old World monkeys and apes. Our findings suggest that the deterioration of the olfactory repertoire occurred concomitant with the acquisition of full trichromatic color vision in primates.


Nature Genetics | 2000

Identification of the gene causing mucolipidosis type IV.

Ruth Bargal; Nili Avidan; Edna Ben-Asher; Zvia Olender; Marcia Zeigler; Ayala Frumkin; Annick Raas-Rothschild; Gustavo Glusman; Doron Lancet; Gideon Bach

Mucolipidosis type IV (MLIV) is an autosomal recessive, neurodegenerative, lysosomal storage disorder characterized by psychomotor retardation and ophthalmological abnormalities including corneal opacities, retinal degeneration and strabismus. Most patients reach a maximal developmental level of 12–15 months. The disease was classified as a mucolipidosis following observations by electron microscopy indicating the lysosomal storage of lipids together with water-soluble, granulated substances. Over 80% of the MLIV patients diagnosed are Ashkenazi Jews, including severely affected and mildly affected patients. The gene causing MLIV was previously mapped to human chromosome 19p13.2–13.3 in a region of approximately 1 cM (ref. 7). Haplotype analysis in the MLIV gene region of over 70 MLIV Ashkenazi chromosomes indicated the existence of two founder chromosomes among 95% of the Ashkenazi MLIV families: a major haplotype in 72% and a minor haplotype in 23% of the MLIV chromosomes (ref. 7, and G.B., unpublished data). The remaining 5% are distinct haplotypes found only in single patients. The basic metabolic defect causing the lysosomal storage in MLIV has not yet been identified. Thus, positional cloning was an alternative to identify the MLIV gene. We report here the identification of a new gene in this human chromosomal region in which MLIV-specific mutations were identified.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Human specific loss of olfactory receptor genes

Yoav Gilad; Orna Man; Svante Pääbo; Doron Lancet

Olfactory receptor (OR) genes constitute the basis for the sense of smell and are encoded by the largest mammalian gene superfamily of >1,000 genes. In humans, >60% of these are pseudogenes. In contrast, the mouse OR repertoire, although of roughly equal size, contains only ≈20% pseudogenes. We asked whether the high fraction of nonfunctional OR genes is specific to humans or is a common feature of all primates. To this end, we have compared the sequences of 50 human OR coding regions, regardless of their functional annotations, to those of their putative orthologs in chimpanzees, gorillas, orangutans, and rhesus macaques. We found that humans have accumulated mutations that disrupt OR coding regions roughly 4-fold faster than any other species sampled. As a consequence, the fraction of OR pseudogenes in humans is almost twice as high as in the non-human primates, suggesting a human-specific process of OR gene disruption, likely due to a reduced chemosensory dependence relative to apes.


Nature Genetics | 2003

Different noses for different people

Idan Menashe; Orna Man; Doron Lancet; Yoav Gilad

Of more than 1,000 human olfactory receptor genes, more than half seem to be pseudogenes. We investigated whether the most recent of these disruptions might still segregate with the intact form by genotyping 51 candidate genes in 189 ethnically diverse humans. The results show an unprecedented prevalence of segregating pseudogenes, identifying one of the most pronounced cases of functional population diversity in the human genome.

Collaboration


Dive into the Doron Lancet's collaboration.

Top Co-Authors

Avatar

Tsviya Olender

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Edna Ben-Asher

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Marilyn Safran

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Gustavo Glusman

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Miriam Khen

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Nili Avidan

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Tsippi Iny Stein

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Naomi Rosen

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Gil Stelzer

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Vered Chalifa-Caspi

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge