Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gustavo Glusman is active.

Publication


Featured researches published by Gustavo Glusman.


Nature | 2005

Initial sequence of the chimpanzee genome and comparison with the human genome

Tarjei S. Mikkelsen; LaDeana W. Hillier; Evan E. Eichler; Michael C. Zody; David B. Jaffe; Shiaw-Pyng Yang; Wolfgang Enard; Ines Hellmann; Kerstin Lindblad-Toh; Tasha K. Altheide; Nicoletta Archidiacono; Peer Bork; Jonathan Butler; Jean L. Chang; Ze Cheng; Asif T. Chinwalla; Pieter J. de Jong; Kimberley D. Delehaunty; Catrina C. Fronick; Lucinda L. Fulton; Yoav Gilad; Gustavo Glusman; Sante Gnerre; Tina Graves; Toshiyuki Hayakawa; Karen E. Hayden; Xiaoqiu Huang; Hongkai Ji; W. James Kent; Mary Claire King

Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.


Science | 2010

Analysis of Genetic Inheritance in a Family Quartet by Whole-Genome Sequencing

Jared C. Roach; Gustavo Glusman; Arian Smit; Chad D. Huff; Robert Hubley; Paul Shannon; Lee Rowen; Krishna Pant; Nathan Goodman; Michael J. Bamshad; Jay Shendure; Radoje Drmanac; Lynn B. Jorde; Leroy Hood; David J. Galas

Runs in the Family The power to detect mutations involved in disease by genome sequencing is enhanced when combined with the ability to discover specific mutations that may have arisen between offspring and parents. Roach et al. (p. 636, published online 10 March) present the sequence of a family with two offspring affected with two genetic disorders: Miller syndrome and primary ciliary dyskinesia. Sequence analysis of the children and their parents not only showed that the intergenerational mutation rate was lower than anticipated but also revealed recombination sites and the occurrence of rare polymorphisms. Genomic sequencing of an entire family reveals the rate of spontaneous mutations in humans and identifies disease genes. We analyzed the whole-genome sequences of a family of four, consisting of two siblings and their parents. Family-based sequencing allowed us to delineate recombination sites precisely, identify 70% of the sequencing errors (resulting in > 99.999% accuracy), and identify very rare single-nucleotide polymorphisms. We also directly estimated a human intergeneration mutation rate of ~1.1 × 10−8 per position per haploid genome. Both offspring in this family have two recessive disorders: Miller syndrome, for which the gene was concurrently identified, and primary ciliary dyskinesia, for which causative genes have been previously identified. Family-based genome analysis enabled us to narrow the candidate genes for both of these Mendelian disorders to only four. Our results demonstrate the value of complete genome sequencing in families.


Nature Genetics | 2000

Identification of the gene causing mucolipidosis type IV.

Ruth Bargal; Nili Avidan; Edna Ben-Asher; Zvia Olender; Marcia Zeigler; Ayala Frumkin; Annick Raas-Rothschild; Gustavo Glusman; Doron Lancet; Gideon Bach

Mucolipidosis type IV (MLIV) is an autosomal recessive, neurodegenerative, lysosomal storage disorder characterized by psychomotor retardation and ophthalmological abnormalities including corneal opacities, retinal degeneration and strabismus. Most patients reach a maximal developmental level of 12–15 months. The disease was classified as a mucolipidosis following observations by electron microscopy indicating the lysosomal storage of lipids together with water-soluble, granulated substances. Over 80% of the MLIV patients diagnosed are Ashkenazi Jews, including severely affected and mildly affected patients. The gene causing MLIV was previously mapped to human chromosome 19p13.2–13.3 in a region of approximately 1 cM (ref. 7). Haplotype analysis in the MLIV gene region of over 70 MLIV Ashkenazi chromosomes indicated the existence of two founder chromosomes among 95% of the Ashkenazi MLIV families: a major haplotype in 72% and a minor haplotype in 23% of the MLIV chromosomes (ref. 7, and G.B., unpublished data). The remaining 5% are distinct haplotypes found only in single patients. The basic metabolic defect causing the lysosomal storage in MLIV has not yet been identified. Thus, positional cloning was an alternative to identify the MLIV gene. We report here the identification of a new gene in this human chromosomal region in which MLIV-specific mutations were identified.


Nucleic Acids Research | 2003

Human Gene-Centric Databases at the Weizmann Institute of Science: GeneCards, UDB, CroW 21 and HORDE

Marilyn Safran; Vered Chalifa-Caspi; Orit Shmueli; Tsviya Olender; Michal Lapidot; Naomi Rosen; Michael Shmoish; Yakov Peter; Gustavo Glusman; Ester Feldmesser; Avital Adato; Inga Peter; Miriam Khen; Tal Atarot; Yoram Groner; Doron Lancet

Recent enhancements and current research in the GeneCards (GC) (http://bioinfo.weizmann.ac.il/cards/) project are described, including the addition of gene expression profiles and integrated gene locations. Also highlighted are the contributions of specialized associated human gene-centric databases developed at the Weizmann Institute. These include the Unified Database (UDB) (http://bioinfo.weizmann.ac.il/udb) for human genome mapping, the human Chromosome 21 database at the Weizmann Insti-tute (CroW 21) (http://bioinfo.weizmann.ac.il/crow21), and the Human Olfactory Receptor Data Explora-torium (HORDE) (http://bioinfo.weizmann.ac.il/HORDE). The synergistic relationships amongst these efforts have positively impacted the quality, quantity and usefulness of the GeneCards gene compendium.


Gene | 2001

The RUNX3 gene – sequence, structure and regulated expression

Carmen Bangsow; Nir Rubins; Gustavo Glusman; Yael Bernstein; Varda Negreanu; Dalia Goldenberg; Joseph Lotem; Edna Ben-Asher; Doron Lancet; Ditsa Levanon; Yoram Groner

The RUNX3 gene belongs to the runt domain family of transcription factors that act as master regulators of gene expression in major developmental pathways. In mammals the family includes three genes, RUNX1, RUNX2 and RUNX3. Here, we describe a comparative analysis of the human chromosome 1p36.1 encoded RUNX3 and mouse chromosome 4 encoded Runx3 genomic regions. The analysis revealed high similarities between the two genes in the overall size and organization and showed that RUNX3/Runx3 is the smallest in the family, but nevertheless exhibits all the structural elements characterizing the RUNX family. It also revealed that RUNX3/Runx3 bears a high content of the ancient mammalian repeat MIR. Together, these data delineate RUNX3/Runx3 as the evolutionary founder of the mammalian RUNX family. Detailed sequence analysis placed the two genes at a GC-rich H3 isochore with a sharp transition of GC content between the gene sequence and the downstream intergenic region. Two large conserved CpG islands were found within both genes, one around exon 2 and the other at the beginning of exon 6. RUNX1, RUNX2 and RUNX3 gene products bind to the same DNA motif, hence their temporal and spatial expression during development should be tightly regulated. Structure/function analysis showed that two promoter regions, designated P1 and P2, regulate RUNX3 expression in a cell type-specific manner. Transfection experiments demonstrated that both promoters were highly active in the GM1500 B-cell line, which endogenously expresses RUNX3, but were inactive in the K562 myeloid cell line, which does not express RUNX3.


Infection and Immunity | 2005

Structural and Genetic Diversity of Group B Streptococcus Capsular Polysaccharides

Michael J. Cieslewicz; Donald O. Chaffin; Gustavo Glusman; Dennis L. Kasper; Anup Madan; Stephani Rodrigues; Jessica Fahey; Michael R. Wessels; Craig E. Rubens

ABSTRACT Group B Streptococcus (GBS) is an important pathogen of neonates, pregnant women, and immunocompromised individuals. GBS isolates associated with human infection produce one of nine antigenically distinct capsular polysaccharides which are thought to play a key role in virulence. A comparison of GBS polysaccharide structures of all nine known GBS serotypes together with the predicted amino acid sequences of the proteins that direct their synthesis suggests that the evolution of serotype-specific capsular polysaccharides has proceeded through en bloc replacement of individual glycosyltransferase genes with DNA sequences that encode enzymes with new linkage specificities. We found striking heterogeneity in amino acid sequences of synthetic enzymes with very similar functions, an observation that supports horizontal gene transfer rather than stepwise mutagenesis as a mechanism for capsule variation. Eight of the nine serotypes appear to be closely related both structurally and genetically, whereas serotype VIII is more distantly related. This similarity in polysaccharide structure strongly suggests that the evolutionary pressure toward antigenic variation exerted by acquired immunity is counterbalanced by a survival advantage conferred by conserved structural motifs of the GBS polysaccharides.


Immunity | 2001

Comparative Genomics of the Human and Mouse T Cell Receptor Loci

Gustavo Glusman; Lee Rowen; Inyoul Lee; Cecilie Boysen; Jared C. Roach; Arian Smit; Kai Wang; Ben F. Koop; Leroy Hood

The availability of the complete genomic sequences of the human and mouse T cell receptor loci opens up new opportunities for understanding T cell receptors (TCRs) and their genes. The full complement of TCR gene segments is finally known and should prove a valuable resource for supporting functional studies. A rational nomenclature system has been implemented and is widely available through IMGT and other public databases. Systematic comparisons of the genomic sequences within each locus, between loci, and across species enable precise analyses of the various diversification mechanisms and some regulatory signals. The genomic landscape of the TCR loci provides fundamental insights into TCR evolution as highly localized and tightly regulated gene families.


Bioinformatics | 2011

Kaviar: an accessible system for testing SNV novelty

Gustavo Glusman; Juan Antonio Caballero; Denise E. Mauldin; Leroy Hood; Jared C. Roach

SUMMARY With the rapidly expanding availability of data from personal genomes, exomes and transcriptomes, medical researchers will frequently need to test whether observed genomic variants are novel or known. This task requires downloading and handling large and diverse datasets from a variety of sources, and processing them with bioinformatics tools and pipelines. Alternatively, researchers can upload data to online tools, which may conflict with privacy requirements. We present here Kaviar, a tool that greatly simplifies the assessment of novel variants. Kaviar includes: (i) an integrated and growing database of genomic variation from diverse sources, including over 55 million variants from personal genomes, family genomes, transcriptomes, SNV databases and population surveys; and (ii) software for querying the database efficiently.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Rare variants in neuronal excitability genes influence risk for bipolar disorder

Seth A. Ament; Szabolcs Szelinger; Gustavo Glusman; Justin Ashworth; Liping Hou; Nirmala Akula; Tatyana Shekhtman; Mary E. Brunkow; Denise E. Mauldin; Anna Barbara Stittrich; Katherine Rouleau; Sevilla D. Detera-Wadleigh; John I. Nurnberger; Howard J. Edenberg; Elliot S. Gershon; Nicholas J. Schork; Nathan D. Price; Richard Gelinas; Leroy Hood; David Craig; Francis J. McMahon; John R. Kelsoe; Jared C. Roach

Significance Bipolar disorder (BD) is a common, severe, and recurrent psychiatric disorder with no known cure and substantial morbidity and mortality. Heritable causes contribute up to 80% of the lifetime risk for BD. Common genetic variation explains ∼25% of this heritable risk. Rare genetic variants may explain additional risk. We identified contributions of rare variants to BD by sequencing the genomes of 200 individuals from 41 families with BD. The two main findings of this study were as follows: rare risk variants for BD were enriched in genes and pathways that regulate diverse aspects of neuronal excitability; and most of these risk variants were noncoding with predicted regulatory functions. These results highlight specific hypotheses for future research and potential therapeutic targets. We sequenced the genomes of 200 individuals from 41 families multiply affected with bipolar disorder (BD) to identify contributions of rare variants to genetic risk. We initially focused on 3,087 candidate genes with known synaptic functions or prior evidence from genome-wide association studies. BD pedigrees had an increased burden of rare variants in genes encoding neuronal ion channels, including subunits of GABAA receptors and voltage-gated calcium channels. Four uncommon coding and regulatory variants also showed significant association, including a missense variant in GABRA6. Targeted sequencing of 26 of these candidate genes in an additional 3,014 cases and 1,717 controls confirmed rare variant associations in ANK3, CACNA1B, CACNA1C, CACNA1D, CACNG2, CAMK2A, and NGF. Variants in promoters and 5′ and 3′ UTRs contributed more strongly than coding variants to risk for BD, both in pedigrees and in the case-control cohort. The genes and pathways identified in this study regulate diverse aspects of neuronal excitability. We conclude that rare variants in neuronal excitability genes contribute to risk for BD.


Nature Biotechnology | 2014

A unified test of linkage analysis and rare-variant association for analysis of pedigree sequence data

Hao Hu; Jared C. Roach; Hilary Coon; Stephen L. Guthery; Karl V. Voelkerding; Rebecca L. Margraf; Jacob D. Durtschi; Sean V. Tavtigian; Shankaracharya; Wilfred Wu; Paul Scheet; Shuoguo Wang; Jinchuan Xing; Gustavo Glusman; Robert Hubley; Hong Li; Vidu Garg; Barry Moore; Leroy Hood; David J. Galas; Deepak Srivastava; Martin G. Reese; Lynn B. Jorde; Mark Yandell; Chad D. Huff

High-throughput sequencing of related individuals has become an important tool for studying human disease. However, owing to technical complexity and lack of available tools, most pedigree-based sequencing studies rely on an ad hoc combination of suboptimal analyses. Here we present pedigree-VAAST (pVAAST), a disease-gene identification tool designed for high-throughput sequence data in pedigrees. pVAAST uses a sequence-based model to perform variant and gene-based linkage analysis. Linkage information is then combined with functional prediction and rare variant case-control association information in a unified statistical framework. pVAAST outperformed linkage and rare-variant association tests in simulations and identified disease-causing genes from whole-genome sequence data in three human pedigrees with dominant, recessive and de novo inheritance patterns. The approach is robust to incomplete penetrance and locus heterogeneity and is applicable to a wide variety of genetic traits. pVAAST maintains high power across studies of monogenic, high-penetrance phenotypes in a single pedigree to highly polygenic, common phenotypes involving hundreds of pedigrees.

Collaboration


Dive into the Gustavo Glusman's collaboration.

Top Co-Authors

Avatar

Leroy Hood

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jared C. Roach

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Doron Lancet

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

David J. Galas

Pacific Northwest Diabetes Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lee Rowen

University of Victoria

View shared research outputs
Top Co-Authors

Avatar

Hong Li

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Juan Caballero

Barcelona Biomedical Research Park

View shared research outputs
Top Co-Authors

Avatar

Chad D. Huff

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge