Dorothea Lorenz
Leibniz Association
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dorothea Lorenz.
EMBO Reports | 2007
Birgitte Lygren; Cathrine R. Carlson; Katja Santamaria; Valentina Lissandron; Theresa McSorley; Jessica Litzenberg; Dorothea Lorenz; Burkhard Wiesner; Walter Rosenthal; Manuela Zaccolo; Kjetil Taskén; Enno Klussmann
The β‐adrenergic receptor/cyclic AMP/protein kinase A (PKA) signalling pathway regulates heart rate and contractility. Here, we identified a supramolecular complex consisting of the sarcoplasmic reticulum Ca2+‐ATPase (SERCA2), its negative regulator phospholamban (PLN), the A‐kinase anchoring protein AKAP18δ and PKA. We show that AKAP18δ acts as a scaffold that coordinates PKA phosphorylation of PLN and the adrenergic effect on Ca2+ re‐uptake. Inhibition of the compartmentalization of this cAMP signalling complex by specific molecular disruptors interferes with the phosphorylation of PLN. This prevents the subsequent release of PLN from SERCA2, thereby affecting the Ca2+ re‐uptake into the sarcoplasmic reticulum induced by adrenergic stimuli.
Journal of Biological Chemistry | 2001
Enno Klussmann; Grazia Tamma; Dorothea Lorenz; Burkhard Wiesner; Kenan Maric; Fred Hofmann; Klaus Aktories; Giovanna Valenti; Walter Rosenthal
Vasopressin regulates water reabsorption in renal collecting duct principal cells by a cAMP-dependent translocation of the water channel aquaporin-2 (AQP2) from intracellular vesicles into the cell membrane. In the present work primary cultured inner medullary collecting duct cells were used to study the role of the proteins of the Rho family in the translocation of AQP2. Clostridium difficile toxin B, which inhibits all members of the Rho family, Clostridium limosum C3 toxin, which inactivates only Rho, and the Rho kinase inhibitor, Y-27632, induced both depolymerization of actin stress fibers and AQP2 translocation in the absence of vasopressin. The data suggest an inhibitory role of Rho in this process, whereby constitutive membrane localization is prevented in resting cells. Expression of constitutively active RhoA induced formation of actin stress fibers and abolished AQP2 translocation in response to elevation of intracellular cAMP, confirming the inhibitory role of Rho. Cytochalasin D induced both depolymerization of the F-actin cytoskeleton and AQP2 translocation, indicating that depolymerization of F-actin is sufficient to induce AQP2 translocation. Thus Rho is likely to control the intracellular localization of AQP2 via regulation of the F-actin cytoskeleton.
Journal of Biological Chemistry | 2004
Volker Henn; Bayram Edemir; Eduard Stefan; Burkhard Wiesner; Dorothea Lorenz; Franziska Theilig; Roland Schmitt; Lutz Vossebein; Grazia Tamma; Michael Beyermann; Eberhard Krause; Friedrich W. Herberg; Giovana Valenti; S. Bachmann; Walter Rosenthal; Enno Klussmann
Arginine vasopressin (AVP) increases the water permeability of renal collecting duct principal cells by inducing the fusion of vesicles containing the water channel aquaporin-2 (AQP2) with the plasma membrane (AQP2 shuttle). This event is initiated by activation of vasopressin V2 receptors, followed by an elevation of cAMP and the activation of protein kinase A (PKA). The tethering of PKA to subcellular compartments by protein kinase A anchoring proteins (AKAPs) is a prerequisite for the AQP2 shuttle. During the search for AKAP(s) involved in the shuttle, a new splice variant of AKAP18, AKAP18δ, was identified. AKAP18δ functions as an AKAP in vitro and in vivo. In the kidney, it is mainly expressed in principal cells of the inner medullary collecting duct, closely resembling the distribution of AQP2. It is present in both the soluble and particulate fractions derived from renal inner medullary tissue. Within the particulate fraction, AKAP18δ was identified on the same intracellular vesicles as AQP2 and PKA. AVP not only recruited AQP2, but also AKAP18δ to the plasma membrane. The elevation of cAMP caused the dissociation of AKAP18δ and PKA. The data suggest that AKAP18δ is involved in the AQP2 shuttle.
Journal of The American Society of Nephrology | 2007
Eduard Stefan; Burkhard Wiesner; George S. Baillie; Rustam Mollajew; Volker Henn; Dorothea Lorenz; Jens Furkert; Katja Santamaria; Pavel I. Nedvetsky; Christian Hundsrucker; Michael Beyermann; Eberhard Krause; Peter Pohl; Irene Gall; Andrew N. MacIntyre; S. Bachmann; Miles D. Houslay; Walter Rosenthal; Enno Klussmann
The cAMP/protein kinase A (PKA)-dependent insertion of water channel aquaporin-2 (AQP2)-bearing vesicles into the plasma membrane in renal collecting duct principal cells (AQP2 shuttle) constitutes the molecular basis of arginine vasopressin (AVP)-regulated water reabsorption. cAMP/PKA signaling systems are compartmentalized by A kinase anchoring proteins (AKAP) that tether PKA to subcellular sites and by phosphodiesterases (PDE) that terminate PKA signaling through hydrolysis of localized cAMP. In primary cultured principal cells, AVP causes focal activation of PKA. PKA and cAMP-specific phosphodiesterase-4D (PDE4D) are located on AQP2-bearing vesicles. The selective PDE4 inhibitor rolipram increases AKAP-tethered PKA activity on AQP2-bearing vesicles and enhances the AQP2 shuttle and thereby the osmotic water permeability. AKAP18delta, which is located on AQP2-bearing vesicles, directly interacts with PDE4D and PKA. In response to AVP, PDE4D and AQP2 translocate to the plasma membrane. Here PDE4D is activated through PKA phosphorylation and reduces the osmotic water permeability. Taken together, a novel, compartmentalized, and physiologically relevant cAMP-dependent signal transduction module on AQP2-bearing vesicles, comprising anchored PDE4D, AKAP18delta, and PKA, has been identified.
Biochemical Journal | 2006
Christian Hundsrucker; Gerd Krause; Michael Beyermann; Anke Prinz; Bastian Zimmermann; Oliver Diekmann; Dorothea Lorenz; Eduard Stefan; Pavel I. Nedvetsky; Margitta Dathe; Frank Christian; Theresa McSorley; Eberhard Krause; George McConnachie; Friedrich W. Herberg; John D. Scott; Walter Rosenthal; Enno Klussmann
PKA (protein kinase A) is tethered to subcellular compartments by direct interaction of its regulatory subunits (RI or RII) with AKAPs (A kinase-anchoring proteins). AKAPs preferentially bind RII subunits via their RII-binding domains. RII-binding domains form structurally conserved amphipathic helices with unrelated sequences. Their binding affinities for RII subunits differ greatly within the AKAP family. Amongst the AKAPs that bind RIIalpha subunits with high affinity is AKAP7delta [AKAP18delta; K(d) (equilibrium dissociation constant) value of 31 nM]. An N-terminally truncated AKAP7delta mutant binds RIIalpha subunits with higher affinity than the full-length protein presumably due to loss of an inhibitory region [Henn, Edemir, Stefan, Wiesner, Lorenz, Theilig, Schmidtt, Vossebein, Tamma, Beyermann et al. (2004) J. Biol. Chem. 279, 26654-26665]. In the present study, we demonstrate that peptides (25 amino acid residues) derived from the RII-binding domain of AKAP7delta bind RIIalpha subunits with higher affinity (K(d)=0.4+/-0.3 nM) than either full-length or N-terminally truncated AKAP7delta, or peptides derived from other RII binding domains. The AKAP7delta-derived peptides and stearate-coupled membrane-permeable mutants effectively disrupt AKAP-RII subunit interactions in vitro and in cell-based assays. Thus they are valuable novel tools for studying anchored PKA signalling. Molecular modelling indicated that the high affinity binding of the amphipathic helix, which forms the RII-binding domain of AKAP7delta, with RII subunits involves both the hydrophobic and the hydrophilic faces of the helix. Alanine scanning (25 amino acid peptides, SPOT technology, combined with RII overlay assays) of the RII binding domain revealed that hydrophobic amino acid residues form the backbone of the interaction and that hydrogen bond- and salt-bridge-forming amino acid residues increase the affinity of the interaction.
Neuron | 2014
Natalia L. Kononenko; Dmytro Puchkov; Gala A. Classen; Alexander M. Walter; Arndt Pechstein; Linda Sawade; Natalie Kaempf; Thorsten Trimbuch; Dorothea Lorenz; Christian Rosenmund; Tanja Maritzen; Volker Haucke
Neurotransmission depends on presynaptic membrane retrieval and local reformation of synaptic vesicles (SVs) at nerve terminals. The mechanisms involved in these processes are highly controversial with evidence being presented for SV membranes being retrieved exclusively via clathrin-mediated endocytosis (CME) from the plasma membrane or via ultrafast endocytosis independent of clathrin. Here we show that clathrin and its major adaptor protein 2 (AP-2) in addition to the plasma membrane operate at internal endosome-like vacuoles to regenerate SVs but are not essential for membrane retrieval. Depletion of clathrin or conditional knockout of AP-2 result in defects in SV reformation and an accumulation of endosome-like vacuoles generated by clathrin-independent endocytosis (CIE) via dynamin 1/3 and endophilin. These results together with theoretical modeling provide a conceptual framework for how synapses capitalize on clathrin-independent membrane retrieval and clathrin/AP-2-mediated SV reformation from endosome-like vacuoles to maintain excitability over a broad range of stimulation frequencies.
EMBO Reports | 2003
Dorothea Lorenz; Andrey V. Krylov; Daniel Hahm; Volker Hagen; Walter Rosenthal; Peter Pohl; Kenan Maric
The initial response of renal epithelial cells to the antidiuretic hormone arginine vasopressin (AVP) is an increase in cyclic AMP. By applying immunofluorescence, cell membrane capacitance and transepithelial water flux measurements we show that cAMP alone is sufficient to elicit the antidiuretic cellular response in primary cultured epithelial cells from renal inner medulla, namely the transport of aquaporin‐2 (AQP2)‐bearing vesicles to, and their subsequent fusion with, the plasma membrane (AQP2 shuttle). The AQP2 shuttle is evoked neither by AVP‐independent Ca2+ increases nor by AVP‐induced Ca2+ increases. However, clamping cytosolic Ca2+ concentrations below resting levels at 25 nM inhibited exocytosis. Exocytosis was confined to a slow monophasic response, and readily releasable vesicles were missing. Analysis of endocytic capacitance steps revealed that cAMP does not decelerate the retrieval of AQP2 from the plasma membrane. Our data suggest that cAMP initiates an early step, namely the transport of AQP2‐bearing vesicles towards the plasma membrane, and do not support a regulatory function for Ca2+ in the AQP2 shuttle.
Journal of Biological Chemistry | 2011
Frank Christian; Márta Szaszák; Sabine Friedl; Stephan Drewianka; Dorothea Lorenz; Andrey C. da Costa Goncalves; Jens Furkert; Carolyn Vargas; Peter Schmieder; Frank Götz; Kerstin Zühlke; Marie Moutty; Hendrikje Göttert; Mangesh Joshi; Bernd Reif; Hannelore Haase; Ingo Morano; Solveig Grossmann; Anna Klukovits; Judit Verli; Róbert Gáspár; Claudia Noack; Martin W. Bergmann; Robert S. Kass; Kornelia Hampel; Dmitry Kashin; Hans Gottfried Genieser; Friedrich W. Herberg; Debbie Willoughby; Dermot M. F. Cooper
A-kinase anchoring proteins (AKAPs) tether protein kinase A (PKA) and other signaling proteins to defined intracellular sites, thereby establishing compartmentalized cAMP signaling. AKAP-PKA interactions play key roles in various cellular processes, including the regulation of cardiac myocyte contractility. We discovered small molecules, 3,3′-diamino-4,4′-dihydroxydiphenylmethane (FMP-API-1) and its derivatives, which inhibit AKAP-PKA interactions in vitro and in cultured cardiac myocytes. The molecules bind to an allosteric site of regulatory subunits of PKA identifying a hitherto unrecognized region that controls AKAP-PKA interactions. FMP-API-1 also activates PKA. The net effect of FMP-API-1 is a selective interference with compartmentalized cAMP signaling. In cardiac myocytes, FMP-API-1 reveals a novel mechanism involved in terminating β-adrenoreceptor-induced cAMP synthesis. In addition, FMP-API-1 leads to an increase in contractility of cultured rat cardiac myocytes and intact hearts. Thus, FMP-API-1 represents not only a novel means to study compartmentalized cAMP/PKA signaling but, due to its effects on cardiac myocytes and intact hearts, provides the basis for a new concept in the treatment of chronic heart failure.
Biophysical Journal | 2001
Kenan Maric; Burkhard Wiesner; Dorothea Lorenz; Enno Klussmann; Thomas Betz; Walter Rosenthal
The water channel aquaporin-2 (AQP2), a key component of the antidiuretic machinery in the kidney, is rapidly regulated by the antidiuretic hormone vasopressin. The hormone exerts its action by inducing a translocation of AQP2 from intracellular vesicles to the cell membrane. This step requires the elevation of intracellular cyclic AMP. We describe here a new method, laser scanning reflection microscopy (LSRM), suitable for determining cellular osmotic water permeability coefficient changes in primary cultured inner medullary collecting duct (IMCD) cells. The recording of vertical-reflection-mode x-z-scan section areas of unstained, living IMCD cells proved useful and valid for the investigation of osmotic water permeability changes. The time-dependent increases of reflection-mode x-z-scan section areas of swelling cells were fitted to a single-exponential equation. The analysis of the time constants of these processes indicates a twofold increase in osmotic water permeability of IMCD cells after treatment of the cells both with forskolin, a cyclic AMP-elevating agent, and with Clostridium difficile toxin B, an inhibitor of Rho proteins that leads to depolymerization of F-actin-containing stress fibers. This indicates that both agents lead to the functional insertion of AQP2 into the cell membrane. Thus, we have established a new functional assay for the study of the regulation of the water permeability at the cellular level.
FEBS Letters | 1998
Ralf Schülein; Dorothea Lorenz; Alexander Oksche; Burkhard Wiesner; Ricardo Hermosilla; Jutta Ebert; Walter Rosenthal
We have analyzed the polarized cell surface expression of the G protein‐coupled vasopressin V2 receptor (V2 receptor) in Madin‐Darby canine kidney (MDCK) epithelial cells by both conventional cell surface biotinylation assays and laser scanning microscopy of green fluorescent protein (GFP)‐tagged receptors. Cell surface biotinylation assays with stably transfected filter‐grown cells expressing alkaline phosphatase (PhoA)‐tagged receptors demonstrated that the V2 receptor is located predominantly basolaterally at steady state, while minor amounts are expressed apically. Laser scanning microscopy of filter‐ and glass‐grown MDCK cells stably transfected with a GFP‐tagged V2 receptor confirmed that the receptor is expressed mainly basolaterally; within the basolateral compartment, however, the receptor was confined to the lateral subdomain. The results obtained with the GFP‐tagged receptor are thus consistent with and refine those from the biotinylation assay, which does not discriminate lateral from basal membrane regions. Our data indicate that the GFP methodology may effectively supplement cell surface biotinylation assays in future studies of polarized receptor transport. We finally show that microinjection of a plasmid encoding the GFP‐tagged V2 receptor into the nucleus of MDCK cells led to the same results as experiments with stably transfected cells. However, since there was no need for selecting stably transfected cell lines, the experiments were complete within hours. The microinjection technique thus constitutes a powerful single cell technique to study the intracellular transport of G protein‐coupled receptors. The methodology may be applicable to any cell type, even to tissue‐derived, primary cultured cells; coinjection of transport‐regulating compounds should also be possible.