Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dorothee Deckbar is active.

Publication


Featured researches published by Dorothee Deckbar.


Molecular Cell | 2008

ATM Signaling Facilitates Repair of DNA Double-Strand Breaks Associated with Heterochromatin

Aaron A. Goodarzi; Angela T. Noon; Dorothee Deckbar; Yael Ziv; Yosef Shiloh; Markus Löbrich; Penny A. Jeggo

Ataxia Telangiectasia Mutated (ATM) signaling is essential for the repair of a subset of DNA double-strand breaks (DSBs); however, its precise role is unclear. Here, we show that < or =25% of DSBs require ATM signaling for repair, and this percentage correlates with increased chromatin but not damage complexity. Importantly, we demonstrate that heterochromatic DSBs are generally repaired more slowly than euchromatic DSBs, and ATM signaling is specifically required for DSB repair within heterochromatin. Significantly, knockdown of the transcriptional repressor KAP-1, an ATM substrate, or the heterochromatin-building factors HP1 or HDAC1/2 alleviates the requirement for ATM in DSB repair. We propose that ATM signaling temporarily perturbs heterochromatin via KAP-1, which is critical for DSB repair/processing within otherwise compacted/inflexible chromatin. In support of this, ATM signaling alters KAP-1 affinity for chromatin enriched for heterochromatic factors. These data suggest that the importance of ATM signaling for DSB repair increases as the heterochromatic component of a genome expands.


Journal of Cell Biology | 2007

Chromosome breakage after G2 checkpoint release

Dorothee Deckbar; Julie Birraux; Andrea Krempler; Leopoldine Tchouandong; Andrea Beucher; Sarah Cusworth Walker; Tom Stiff; Penny A. Jeggo; Markus Löbrich

DNA double-strand break (DSB) repair and checkpoint control represent distinct mechanisms to reduce chromosomal instability. Ataxia telangiectasia (A-T) cells have checkpoint arrest and DSB repair defects. We examine the efficiency and interplay of ATMs G2 checkpoint and repair functions. Artemis cells manifest a repair defect identical and epistatic to A-T but show proficient checkpoint responses. Only a few G2 cells enter mitosis within 4 h after irradiation with 1 Gy but manifest multiple chromosome breaks. Most checkpoint-proficient cells arrest at the G2/M checkpoint, with the length of arrest being dependent on the repair capacity. Strikingly, cells released from checkpoint arrest display one to two chromosome breaks. This represents a major contribution to chromosome breakage. The presence of chromosome breaks in cells released from checkpoint arrest suggests that release occurs before the completion of DSB repair. Strikingly, we show that checkpoint release occurs at a point when approximately three to four premature chromosome condensation breaks and ∼20 γH2AX foci remain.


Critical Reviews in Biochemistry and Molecular Biology | 2011

Understanding the limitations of radiation-induced cell cycle checkpoints

Dorothee Deckbar; Penny A. Jeggo; Markus Löbrich

The DNA damage response pathways involve processes of double-strand break (DSB) repair and cell cycle checkpoint control to prevent or limit entry into S phase or mitosis in the presence of unrepaired damage. Checkpoints can function to permanently remove damaged cells from the actively proliferating population but can also halt the cell cycle temporarily to provide time for the repair of DSBs. Although efficient in their ability to limit genomic instability, checkpoints are not foolproof but carry inherent limitations. Recent work has demonstrated that the G1/S checkpoint is slowly activated and allows cells to enter S phase in the presence of unrepaired DSBs for about 4–6u2009h post irradiation. During this time, only a slowing but not abolition of S-phase entry is observed. The G2/M checkpoint, in contrast, is quickly activated but only responds to a level of 10–20 DSBs such that cells with a low number of DSBs do not initiate the checkpoint or terminate arrest before repair is complete. Here, we discuss the limitations of these checkpoints in the context of the current knowledge of the factors involved. We suggest that the time needed to fully activate G1/S arrest reflects the existence of a restriction point in G1-phase progression. This point has previously been defined as the point when mitogen starvation fails to prevent cells from entering S phase. However, cells that passed the restriction point can respond to DSBs, albeit with reduced efficiency.


Molecular and Cellular Biology | 2010

Role of ATM and the damage response mediator proteins 53BP1 and MDC1 in the maintenance of G(2)/M checkpoint arrest.

Atsushi Shibata; Olivia Barton; Angela T. Noon; Kirsten Dahm; Dorothee Deckbar; Aaron A. Goodarzi; Markus Löbrich; Penny A. Jeggo

ABSTRACT ATM-dependent initiation of the radiation-induced G2/M checkpoint arrest is well established. Recent results have shown that the majority of DNA double-strand breaks (DSBs) in G2 phase are repaired by DNA nonhomologous end joining (NHEJ), while ∼15% of DSBs are slowly repaired by homologous recombination. Here, we evaluate how the G2/M checkpoint is maintained in irradiated G2 cells, in light of our current understanding of G2 phase DSB repair. We show that ATM-dependent resection at a subset of DSBs leads to ATR-dependent Chk1 activation. ATR-Seckel syndrome cells, which fail to efficiently activate Chk1, and small interfering RNA (siRNA) Chk1-treated cells show premature mitotic entry. Thus, Chk1 significantly contributes to maintaining checkpoint arrest. Second, sustained ATM signaling to Chk2 contributes, particularly when NHEJ is impaired by XLF deficiency. We also show that cells lacking the mediator proteins 53BP1 and MDC1 initially arrest following radiation doses greater than 3 Gy but are subsequently released prematurely. Thus, 53BP1−/− and MDC1−/− cells manifest a checkpoint defect at high doses. This failure to maintain arrest is due to diminished Chk1 activation and a decreased ability to sustain ATM-Chk2 signaling. The combined repair and checkpoint defects conferred by 53BP1 and MDC1 deficiency act synergistically to enhance chromosome breakage.


Cell Cycle | 2007

An Imperfect G2M Checkpoint Contributes to Chromosome Instability Following Irradiation of S and G2 Phase Cells

Andrea Krempler; Dorothee Deckbar; Penny A. Jeggo; Markus Löbrich

DNA double strand break (DSB) repair and checkpoint control represent two major mechanisms that function to reduce chromosomal instability following ionising irradiation (IR). Ataxia telangiectasia (A-T) cells have long been known to have defective checkpoint responses. Recent studies have shown that they also have a DSB repair defect following IR raising the issue of how ATM’s repair and checkpoint functions interplay to maintain chromosomal stability. A-T and Artemis cells manifest an identical and epistatic repair defect throughout the cell cycle demonstrating that ATM’s major repair defect following IR represents Artemis-dependent end-processing. Artemis cells show efficient G2/M checkpoint induction and a prolonged arrest relative to normal cells. Following irradiation of G2 cells, this checkpoint is dependent on ATM and A-T cells fail to show checkpoint arrest. In contrast, cells irradiated during S phase initiate a G2/M checkpoint which is independent of ATM and, significantly, both Artemis and A-T cells show a prolonged arrest at the G2/M checkpoint likely reflecting their repair defect. Strikingly, the G2/M checkpoint is released before the completion of repair when approximately 10-20 DSBs remain both for S phase and G2 phase irradiated cells. This defined sensitivity level of the G2/M checkpoint explains the prolonged arrest in repair-deficient relative to normal cells and provides a conceptual framework for the co-operative phenotype between checkpoint and repair functions in maintaining chromosomal stability.


Cancer Research | 2010

The Limitations of the G1-S Checkpoint

Dorothee Deckbar; Thomas Stiff; Barbara Koch; Caroline Reis; Markus Löbrich; Penny A. Jeggo

It has been proposed that the G(1)-S checkpoint is the critical regulator of genomic stability, preventing the cell cycle progression of cells with a single DNA double-strand break. Using fluorescence-activated cell sorting analysis of asynchronous cells and microscopic analysis of asynchronous and synchronized cells, we show that full blockage of S-phase entry is only observed >4 hours after irradiation. The process is ataxia-telangiectasia mutated (ATM) dependent and Chk1/2 independent and can be activated throughout G(1) phase. By monitoring S-phase entry of irradiated synchronized cells, we show that the duration of arrest is dose dependent, with S-phase entry recommencing after arrest with kinetics similar to that observed in unirradiated cells. Thus, G(1)-S checkpoint arrest is not always permanent. Following exposure to higher doses (> or =2 Gy), G(1)-S arrest is inefficiently maintained, allowing progression of G(1)-phase cells into G(2) with elevated gammaH2AX foci and chromosome breaks. At early times after irradiation (< or =4 h), G(1)-S checkpoint arrest is not established but cells enter S phase at a reduced rate. This early slowing in S-phase entry is ATM and Chk2 dependent and detectable after 100 mGy, showing a novel and sensitive damage response. However, the time needed to establish G(1)-S checkpoint arrest provides a window when cells can progress to G(2) and form chromosome breaks. Our findings detail the efficacy of the G(1)-S checkpoint and define two significant limitations: At early times after IR, the activated checkpoint fails to efficiently prevent S-phase entry, and at later times, the checkpoint is inefficiently maintained.


Molecular and Cellular Biology | 2013

Lamin A/C depletion enhances DNA damage-induced stalled replication fork arrest

Mayank Singh; Clayton R. Hunt; Raj K. Pandita; Rakesh K. Kumar; Chin Rang Yang; Nobuo Horikoshi; Robert M. Bachoo; Sara Serag; Michael D. Story; Jerry W. Shay; Simon N. Powell; Arun Gupta; Jessie Jeffery; Shruti Pandita; Benjamin P C Chen; Dorothee Deckbar; Markus Löbrich; Qin Yang; Kum Kum Khanna; Howard J. Worman; Tej K. Pandita

The human LMNA gene encodes the essential nuclear envelope proteins lamin A and C (lamin A/C). Mutations in LMNA result in altered nuclear morphology, but how this impacts the mechanisms that maintain genomic stability is unclear. Here, we report that lamin A/C-deficient cells have a normal response to ionizing radiation but are sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with ICL agents (cisplatin, camptothecin, and mitomycin), lamin A/C-deficient cells displayed normal γ-H2AX focus formation but a higher frequency of cells with delayed γ-H2AX removal, decreased recruitment of the FANCD2 repair factor, and a higher frequency of chromosome aberrations. Similarly, following hydroxyurea-induced replication stress, lamin A/C-deficient cells had an increased frequency of cells with delayed disappearance of γ-H2AX foci and defective repair factor recruitment (Mre11, CtIP, Rad51, RPA, and FANCD2). Replicative stress also resulted in a higher frequency of chromosomal aberrations as well as defective replication restart. Taken together, the data can be interpreted to suggest that lamin A/C has a role in the restart of stalled replication forks, a prerequisite for initiation of DNA damage repair by the homologous recombination pathway, which is intact in lamin A/C-deficient cells. We propose that lamin A/C is required for maintaining genomic stability following replication fork stalling, induced by either ICL damage or replicative stress, in order to facilitate fork regression prior to DNA damage repair.


Radiotherapy and Oncology | 2011

Elevated radiation-induced γH2AX foci in G2 phase heterozygous BRCA2 fibroblasts

Andrea Beucher; Dorothee Deckbar; Eik Schumann; Andrea Krempler; M. Frankenberg-Schwager; Markus Löbrich

BACKGROUND AND PURPOSEnAbout 5-10% of all breast cancer cases are associated with heterozygous germ-line mutations in the genes encoding BRCA1 and BRCA2. Carriers of such mutations are highly predisposed for developing breast or ovarian cancer and, thus, are advised to undergo regular radio-diagnostic examinations. BRCA1 and BRCA2 are involved in multiple cellular processes including the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) and different studies addressing the DSB repair capacity of BRCA1+/- or BRCA2+/- cells led to contradictory results.nnnMATERIALS AND METHODSnUsing the sensitive method of γH2AX foci analysis in combination with cell cycle markers, we specifically measured DSB repair in confluent G0 as well as in exponentially growing G1 and G2 phase primary WT, BRCA1+/- and BRCA2+/- fibroblasts.nnnRESULTSnBoth BRCA1+/- and BRCA2+/- cells displayed normal DSB repair in G0 and in G1. In contrast, in G2, BRCA2+/- but not BRCA1+/- cells exhibited a decreased DSB repair capacity which was in between that of WT and that of a hypomorphic BRCA2-/- cell line.nnnCONCLUSIONSnThe residual amount of normal BRCA1 seems to be sufficient for efficient DSB repair in all cell cycle phases, while the decreased DSB repair capacity of heterozygous BRCA2 mutations suggests gene dosage effects in G2.


Acta Medica Nagasakiensia | 2009

The Maintenance of ATM Dependent G2/M Checkpoint Arrest Following Exposure to Ionizing Radiation

Atsushi Shibata; Olivia Barton; Angela T. Noon; Kirsten Dahm; Dorothee Deckbar; Aaron A. Goodarzi; Markus Löbrich; Penny A. Jeggo


Archive | 2009

Repair of DNA Double-Strand Breaks in Mouse Tissues after Low dose irradiation

Saskia Grudzenski; Alexander Raths; Dorothee Deckbar; Claudia E. Rube; Markus Löbrich

Collaboration


Dive into the Dorothee Deckbar's collaboration.

Top Co-Authors

Avatar

Markus Löbrich

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Beucher

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge