Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dorus A. Mans is active.

Publication


Featured researches published by Dorus A. Mans.


American Journal of Human Genetics | 2010

Exome Sequencing Identifies WDR35 Variants Involved in Sensenbrenner Syndrome

Christian Gilissen; Heleen H. Arts; Alexander Hoischen; Liesbeth Spruijt; Dorus A. Mans; Peer Arts; Bart van Lier; Marloes Steehouwer; Jeroen van Reeuwijk; Sarina G. Kant; Ronald Roepman; Nine V.A.M. Knoers; Joris A. Veltman; Han G. Brunner

Sensenbrenner syndrome/cranioectodermal dysplasia (CED) is an autosomal-recessive disease that is characterized by craniosynostosis and ectodermal and skeletal abnormalities. We sequenced the exomes of two unrelated CED patients and identified compound heterozygous mutations in WDR35 as the cause of the disease in each of the two patients independently, showing that it is possible to find the causative gene by sequencing the exome of a single sporadic patient. With RT-PCR, we demonstrate that a splice-site mutation in exon 2 of WDR35 alters splicing of RNA on the affected allele, introducing a premature stop codon. WDR35 is homologous to TULP4 (from the Tubby superfamily) and has previously been characterized as an intraflagellar transport component, confirming that Sensenbrenner syndrome is a ciliary disorder.


American Journal of Human Genetics | 2008

CC2D2A Is Mutated in joubert Syndrome and Interacts with the Ciliopathy-Associated Basal Body Protein CEP290

Nicholas T. Gorden; Heleen H. Arts; Melissa A. Parisi; Karlien L.M. Coene; Stef J.F. Letteboer; Sylvia E. C. van Beersum; Dorus A. Mans; Abigail Hikida; Melissa L. Eckert; Dana M. Knutzen; Abdulrahman Alswaid; Hamit Özyürek; Sel Dibooglu; Edgar A. Otto; Yangfan Liu; Erica E. Davis; Carolyn M. Hutter; Theo K. Bammler; Frederico M. Farin; Michael O. Dorschner; Meral Topçu; Elaine H. Zackai; Phillip Rosenthal; Kelly N. Owens; Nicholas Katsanis; John B. Vincent; Friedhelm Hildebrandt; Edwin W. Rubel; David W. Raible; Nine V.A.M. Knoers

Joubert syndrome and related disorders (JSRD) are primarily autosomal-recessive conditions characterized by hypotonia, ataxia, abnormal eye movements, and intellectual disability with a distinctive mid-hindbrain malformation. Variable features include retinal dystrophy, cystic kidney disease, and liver fibrosis. JSRD are included in the rapidly expanding group of disorders called ciliopathies, because all six gene products implicated in JSRD (NPHP1, AHI1, CEP290, RPGRIP1L, TMEM67, and ARL13B) function in the primary cilium/basal body organelle. By using homozygosity mapping in consanguineous families, we identify loss-of-function mutations in CC2D2A in JSRD patients with and without retinal, kidney, and liver disease. CC2D2A is expressed in all fetal and adult tissues tested. In ciliated cells, we observe localization of recombinant CC2D2A at the basal body and colocalization with CEP290, whose cognate gene is mutated in multiple hereditary ciliopathies. In addition, the proteins can physically interact in vitro, as shown by yeast two-hybrid and GST pull-down experiments. A nonsense mutation in the zebrafish CC2D2A ortholog (sentinel) results in pronephric cysts, a hallmark of ciliary dysfunction analogous to human cystic kidney disease. Knockdown of cep290 function in sentinel fish results in a synergistic pronephric cyst phenotype, revealing a genetic interaction between CC2D2A and CEP290 and implicating CC2D2A in cilium/basal body function. These observations extend the genetic spectrum of JSRD and provide a model system for studying extragenic modifiers in JSRD and other ciliopathies.


American Journal of Human Genetics | 2011

Ciliopathies with Skeletal Anomalies and Renal Insufficiency due to Mutations in the IFT-A Gene WDR19

Cecilie Bredrup; Sophie Saunier; Machteld M. Oud; Torunn Fiskerstrand; Alexander Hoischen; Damien Brackman; Sabine Leh; Marit Midtbø; Emilie Filhol; Christine Bole-Feysot; Patrick Nitschke; Christian Gilissen; Olav H. Haugen; Jan Stephan Sanders; Irene Stolte-Dijkstra; Dorus A. Mans; Eric J. Steenbergen; B.C.J. Hamel; Marie Matignon; Rolph Pfundt; Cécile Jeanpierre; Helge Boman; Eyvind Rødahl; Joris A. Veltman; Per M. Knappskog; N.V.A.M. Knoers; Ronald Roepman; Heleen H. Arts

A subset of ciliopathies, including Sensenbrenner, Jeune, and short-rib polydactyly syndromes are characterized by skeletal anomalies accompanied by multiorgan defects such as chronic renal failure and retinitis pigmentosa. Through exome sequencing we identified compound heterozygous mutations in WDR19 in a Norwegian family with Sensenbrenner syndrome. In a Dutch family with the clinically overlapping Jeune syndrome, a homozygous missense mutation in the same gene was found. Both families displayed a nephronophthisis-like nephropathy. Independently, we also identified compound heterozygous WDR19 mutations by exome sequencing in a Moroccan family with isolated nephronophthisis. WDR19 encodes IFT144, a member of the intraflagellar transport (IFT) complex A that drives retrograde ciliary transport. We show that IFT144 is absent from the cilia of fibroblasts from one of the Sensenbrenner patients and that ciliary abundance and morphology is perturbed, demonstrating the ciliary pathogenesis. Our results suggest that isolated nephronophthisis, Jeune, and Sensenbrenner syndromes are clinically overlapping disorders that can result from a similar molecular cause.


Nature Genetics | 2013

DYX1C1 is required for axonemal dynein assembly and ciliary motility

Aarti Tarkar; Niki T. Loges; Christopher E. Slagle; Richard Francis; Gerard W. Dougherty; Joel V. Tamayo; Brett A. Shook; Marie E. Cantino; D. A. Schwartz; Charlotte Jahnke; Heike Olbrich; Claudius Werner; Johanna Raidt; Petra Pennekamp; Marouan Abouhamed; Rim Hjeij; Gabriele Köhler; Matthias Griese; You Li; Kristi Lemke; Nikolas Klena; Xiaoqin Liu; George C. Gabriel; Kimimasa Tobita; Martine Jaspers; Lucy Morgan; Adam J. Shapiro; Stef J.F. Letteboer; Dorus A. Mans; Johnny L. Carson

DYX1C1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deleting exons 2–4 of Dyx1c1 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease, laterality defects and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1 c.T2A start-codon mutation recovered from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also caused laterality and ciliary motility defects. In humans, we identified recessive loss-of-function DYX1C1 mutations in 12 individuals with PCD. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans showed disruptions of outer and inner dynein arms (ODAs and IDAs, respectively). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA and IDA assembly factor DNAAF2 (KTU). Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4).


Journal of Medical Genetics | 2011

C14ORF179 encoding IFT43 is mutated in Sensenbrenner syndrome

Heleen H. Arts; Ernie M.H.F. Bongers; Dorus A. Mans; Sylvia E. C. van Beersum; Machteld M. Oud; Emine Bolat; Liesbeth Spruijt; Elisabeth A. M. Cornelissen; Janneke H M Schuurs-Hoeijmakers; Nicole de Leeuw; Valérie Cormier-Daire; Han G. Brunner; N.V.A.M. Knoers; Ronald Roepman

Background Sensenbrenner syndrome is a heterogeneous ciliopathy that is characterised by skeletal and ectodermal anomalies, accompanied by chronic renal failure, heart defects, liver fibrosis and other features. Objective To identify an additional causative gene in Sensenbrenner syndrome. Methods Single nucleotide polymorphism array analysis and standard sequencing techniques were applied to identify the causative gene. The effect of the identified mutation on protein translation was determined by western blot analysis. Antibodies against intraflagellar transport (IFT) proteins were used in ciliated fibroblast cell lines to investigate the molecular consequences of the mutation on ciliary transport. Results Homozygosity mapping and positional candidate gene sequence analysis were performed in two siblings with Sensenbrenner syndrome of a consanguineous Moroccan family. In both siblings, a homozygous mutation in the initiation codon of C14ORF179 was identified. C14ORF179 encodes IFT43, a subunit of the IFT complex A (IFT-A) machinery of primary cilia. Western blots showed that the mutation disturbs translation of IFT43, inducing the initiation of translation of a shorter protein product from a downstream ATG. The IFT-A protein complex is implicated in retrograde ciliary transport along axonemal microtubules. It was shown that in fibroblasts of one of the siblings affected by Sensenbrenner syndrome, disruption of IFT43 disturbs this transport from the ciliary tip to its base. As anterograde transport in the opposite direction apparently remains functional, the IFT complex B proteins accumulate in the ciliary tip. Interestingly, similar results were obtained using fibroblasts from a patient with Sensenbrenner syndrome with mutations in WDR35/IFT121, encoding another IFT-A subunit. Conclusions The results indicate that Sensenbrenner syndrome is caused by disrupted IFT-A-mediated retrograde ciliary transport.


Oncogene | 2006

Interplay between VHL/HIF1alpha and Wnt/beta-catenin pathways during colorectal tumorigenesis.

Rachel H. Giles; Martijn P. Lolkema; Cristel Snijckers; M. Belderbos; P van der Groep; Dorus A. Mans; M. van Beest; M. van Noort; Roel Goldschmeding; P. J. van Diest; Hans Clevers; Emile E. Voest

Activation of the Wnt signaling pathway initiates the transformation of colorectal epithelial cells, although the transition to metastatic cancer requires angiogenesis. We have investigated the expression of the von Hippel–Lindau (VHL) tumor suppressor in the intestines from humans and mice. Here, we show that VHL expression is regulated by TCF4 and is restricted to the proliferative compartment at the bottom of intestinal crypts. Accordingly, VHL is completely absent from the proliferative intestinal pockets of Tcf4−/− perinatal mice. We observed complementary staining of the hypoxia-inducible factor (HIF) 1α to VHL in normal intestinal epithelium as well as in all stages of colorectal cancer (CRC). To the best of our knowledge, this is the first report demonstrating the presence of nuclear HIF1α in normoxic healthy adult tissue. Although we observed upregulated levels of VHL in very early CRC lesions from sporadic and familial adenomatous polyposis patients – presumably due to activated Wnt signaling – a clear reduction of VHL expression is observed in later stages of CRC progression, coinciding with stabilization of HIF1α. As loss of VHL in later stages of CRC progression results in stabilization of HIF, these data provide evidence that selection for VHL downregulation provides a proangiogenic impulse for CRC progression.


Nature Cell Biology | 2015

An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes

Gabrielle Wheway; Miriam Schmidts; Dorus A. Mans; Katarzyna Szymanska; Thanh Minh T Nguyen; Hilary Racher; Ian G. Phelps; Grischa Toedt; Julie Kennedy; Kirsten A. Wunderlich; Nasrin Sorusch; Zakia Abdelhamed; Subaashini Natarajan; Warren Herridge; Jeroen van Reeuwijk; Nicola Horn; Karsten Boldt; David A. Parry; Stef J.F. Letteboer; Susanne Roosing; Matthew Adams; Sandra M. Bell; Jacquelyn Bond; Julie Higgins; Ewan E. Morrison; Darren C. Tomlinson; Gisela G. Slaats; Teunis J. P. van Dam; Lijia Huang; Kristin Kessler

Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin–proteasome system, 12 G-protein-coupled receptors, and 3 pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localize to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1, also known as CEP90, and C21orf2, also known as LRRC76, as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2 variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease.


American Journal of Human Genetics | 2012

Mutations in C8orf37, Encoding a Ciliary Protein, are Associated with Autosomal-Recessive Retinal Dystrophies with Early Macular Involvement

Alejandro Estrada-Cuzcano; Kornelia Neveling; Susanne Kohl; Eyal Banin; Ygal Rotenstreich; Dror Sharon; Tzipora C. Falik-Zaccai; Stephanie Hipp; Ronald Roepman; Bernd Wissinger; Stef J.F. Letteboer; Dorus A. Mans; Ellen A.W. Blokland; Michael P. Kwint; Sabine J. Gijsen; Ramon A.C. van Huet; Rob W.J. Collin; H. Scheffer; Joris A. Veltman; Eberhart Zrenner; Anneke I. den Hollander; B. Jeroen Klevering; Frans P.M. Cremers

Cone-rod dystrophy (CRD) and retinitis pigmentosa (RP) are clinically and genetically overlapping heterogeneous retinal dystrophies. By using homozygosity mapping in an individual with autosomal-recessive (ar) RP from a consanguineous family, we identified three sizeable homozygous regions, together encompassing 46 Mb. Next-generation sequencing of all exons, flanking intron sequences, microRNAs, and other highly conserved genomic elements in these three regions revealed a homozygous nonsense mutation (c.497T>A [p.Leu166(∗)]) in C8orf37, located on chromosome 8q22.1. This mutation was not present in 150 ethnically matched control individuals, single-nucleotide polymorphism databases, or the 1000 Genomes database. Immunohistochemical studies revealed C8orf37 localization at the base of the primary cilium of human retinal pigment epithelium cells and at the base of connecting cilia of mouse photoreceptors. C8orf37 sequence analysis of individuals who had retinal dystrophy and carried conspicuously large homozygous regions encompassing C8orf37 revealed a homozygous splice-site mutation (c.156-2A>G) in two siblings of a consanguineous family and homozygous missense mutations (c.529C>T [p.Arg177Trp]; c.545A>G [p.Gln182Arg]) in siblings of two other consanguineous families. The missense mutations affect highly conserved amino acids, and in silico analyses predicted that both variants are probably pathogenic. Clinical assessment revealed CRD in four individuals and RP with early macular involvement in two individuals. The two CRD siblings with the c.156-2A>G mutation also showed unilateral postaxial polydactyly. These results underline the importance of disrupted ciliary processes in the pathogenesis of retinal dystrophies.


PLOS Genetics | 2013

Active Transport and Diffusion Barriers Restrict Joubert Syndrome-Associated ARL13B/ARL-13 to an Inv-like Ciliary Membrane Subdomain

Sebiha Cevik; Anna A. W. M. Sanders; Erwin van Wijk; Karsten Boldt; Lara Clarke; Jeroen van Reeuwijk; Yuji Hori; Nicola Horn; Lisette Hetterschijt; Anita Wdowicz; Andrea Mullins; Katarzyna Kida; Oktay I. Kaplan; Sylvia E. C. van Beersum; Ka Man Wu; Stef J.F. Letteboer; Dorus A. Mans; Toshiaki Katada; Kenji Kontani; Marius Ueffing; Ronald Roepman; Hannie Kremer; Oliver E. Blacque

Cilia are microtubule-based cell appendages, serving motility, chemo-/mechano-/photo- sensation, and developmental signaling functions. Cilia are comprised of distinct structural and functional subregions including the basal body, transition zone (TZ) and inversin (Inv) compartments, and defects in this organelle are associated with an expanding spectrum of inherited disorders including Bardet-Biedl syndrome (BBS), Meckel-Gruber Syndrome (MKS), Joubert Syndrome (JS) and Nephronophthisis (NPHP). Despite major advances in understanding ciliary trafficking pathways such as intraflagellar transport (IFT), how proteins are transported to subciliary membranes remains poorly understood. Using Caenorhabditis elegans and mammalian cells, we investigated the transport mechanisms underlying compartmentalization of JS-associated ARL13B/ARL-13, which we previously found is restricted at proximal ciliary membranes. We now show evolutionary conservation of ARL13B/ARL-13 localisation to an Inv-like subciliary membrane compartment, excluding the TZ, in many C. elegans ciliated neurons and in a subset of mammalian ciliary subtypes. Compartmentalisation of C. elegans ARL-13 requires a C-terminal RVVP motif and membrane anchoring to prevent distal cilium and nuclear targeting, respectively. Quantitative imaging in more than 20 mutants revealed differential contributions for IFT and ciliopathy modules in defining the ARL-13 compartment; IFT-A/B, IFT-dynein and BBS genes prevent ARL-13 accumulation at periciliary membranes, whereas MKS/NPHP modules additionally inhibit ARL-13 association with TZ membranes. Furthermore, in vivo FRAP analyses revealed distinct roles for IFT and MKS/NPHP genes in regulating a TZ barrier to ARL-13 diffusion, and intraciliary ARL-13 diffusion. Finally, C. elegans ARL-13 undergoes IFT-like motility and quantitative protein complex analysis of human ARL13B identified functional associations with IFT-B complexes, mapped to IFT46 and IFT74 interactions. Together, these findings reveal distinct requirements for sequence motifs, IFT and ciliopathy modules in defining an ARL-13 subciliary membrane compartment. We conclude that MKS/NPHP modules comprise a TZ barrier to ARL-13 diffusion, whereas IFT genes predominantly facilitate ARL-13 ciliary entry and/or retention via active transport mechanisms.


American Journal of Human Genetics | 2014

CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation.

Rim Hjeij; A. Onoufriadis; Christopher M. Watson; C.E. Slagle; N.T. Klena; Gerard W. Dougherty; M. Kurkowiak; Niki T. Loges; Christine P. Diggle; N.F. Morante; George C. Gabriel; Kristi Lemke; You Li; Petra Pennekamp; Tabea Menchen; F. Konert; June K. Marthin; Dorus A. Mans; Stef J.F. Letteboer; Claudius Werner; Thomas Burgoyne; C. Westermann; Andrew Rutman; Ian M. Carr; C. O'Callaghan; Eduardo Moya; Eddie M. K. Chung; Eamonn Sheridan; Kim G. Nielsen; Ronald Roepman

A diverse family of cytoskeletal dynein motors powers various cellular transport systems, including axonemal dyneins generating the force for ciliary and flagellar beating essential to movement of extracellular fluids and of cells through fluid. Multisubunit outer dynein arm (ODA) motor complexes, produced and preassembled in the cytosol, are transported to the ciliary or flagellar compartment and anchored into the axonemal microtubular scaffold via the ODA docking complex (ODA-DC) system. In humans, defects in ODA assembly are the major cause of primary ciliary dyskinesia (PCD), an inherited disorder of ciliary and flagellar dysmotility characterized by chronic upper and lower respiratory infections and defects in laterality. Here, by combined high-throughput mapping and sequencing, we identified CCDC151 loss-of-function mutations in five affected individuals from three independent families whose cilia showed a complete loss of ODAs and severely impaired ciliary beating. Consistent with the laterality defects observed in these individuals, we found Ccdc151 expressed in vertebrate left-right organizers. Homozygous zebrafish ccdc151ts272a and mouse Ccdc151Snbl mutants display a spectrum of situs defects associated with complex heart defects. We demonstrate that CCDC151 encodes an axonemal coiled coil protein, mutations in which abolish assembly of CCDC151 into respiratory cilia and cause a failure in axonemal assembly of the ODA component DNAH5 and the ODA-DC-associated components CCDC114 and ARMC4. CCDC151-deficient zebrafish, planaria, and mice also display ciliary dysmotility accompanied by ODA loss. Furthermore, CCDC151 coimmunoprecipitates CCDC114 and thus appears to be a highly evolutionarily conserved ODA-DC-related protein involved in mediating assembly of both ODAs and their axonemal docking machinery onto ciliary microtubules.

Collaboration


Dive into the Dorus A. Mans's collaboration.

Top Co-Authors

Avatar

Ronald Roepman

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emile E. Voest

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Heleen H. Arts

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. van Reeuwijk

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Frans P.M. Cremers

Radboud University Nijmegen

View shared research outputs
Researchain Logo
Decentralizing Knowledge