Dos D. Sarbassov
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dos D. Sarbassov.
Science | 2005
Dos D. Sarbassov; David A. Guertin; Siraj M. Ali; David M. Sabatini
Deregulation of Akt/protein kinase B (PKB) is implicated in the pathogenesis of cancer and diabetes. Akt/PKB activation requires the phosphorylation of Thr308 in the activation loop by the phosphoinositide-dependent kinase 1 (PDK1) and Ser473 within the carboxyl-terminal hydrophobic motif by an unknown kinase. We show that in Drosophila and human cells the target of rapamycin (TOR) kinase and its associated protein rictor are necessary for Ser473 phosphorylation and that a reduction in rictor or mammalian TOR (mTOR) expression inhibited an Akt/PKB effector. The rictor-mTOR complex directly phosphorylated Akt/PKB on Ser473 in vitro and facilitated Thr308 phosphorylation by PDK1. Rictor-mTOR may serve as a drug target in tumors that have lost the expression of PTEN, a tumor suppressor that opposes Akt/PKB activation.
Cell | 2002
Do Hyung Kim; Dos D. Sarbassov; Siraj M. Ali; Jessie E. King; Robert R. Latek; Hediye Erdjument-Bromage; Paul Tempst; David M. Sabatini
mTOR/RAFT1/FRAP is the target of the immunosuppressive drug rapamycin and the central component of a nutrient- and hormone-sensitive signaling pathway that regulates cell growth. We report that mTOR forms a stoichiometric complex with raptor, an evolutionarily conserved protein with at least two roles in the mTOR pathway. Raptor has a positive role in nutrient-stimulated signaling to the downstream effector S6K1, maintenance of cell size, and mTOR protein expression. The association of raptor with mTOR also negatively regulates the mTOR kinase activity. Conditions that repress the pathway, such as nutrient deprivation and mitochondrial uncoupling, stabilize the mTOR-raptor association and inhibit mTOR kinase activity. We propose that raptor is a missing component of the mTOR pathway that through its association with mTOR regulates cell size in response to nutrient levels.
Current Biology | 2004
Dos D. Sarbassov; Siraj M. Ali; Do Hyung Kim; David A. Guertin; Robert R. Latek; Hediye Erdjument-Bromage; Paul Tempst; David M. Sabatini
The mammalian TOR (mTOR) pathway integrates nutrient- and growth factor-derived signals to regulate growth, the process whereby cells accumulate mass and increase in size. mTOR is a large protein kinase and the target of rapamycin, an immunosuppressant that also blocks vessel restenosis and has potential anticancer applications. mTOR interacts with the raptor and GbetaL proteins to form a complex that is the target of rapamycin. Here, we demonstrate that mTOR is also part of a distinct complex defined by the novel protein rictor (rapamycin-insensitive companion of mTOR). Rictor shares homology with the previously described pianissimo from D. discoidieum, STE20p from S. pombe, and AVO3p from S. cerevisiae. Interestingly, AVO3p is part of a rapamycin-insensitive TOR complex that does not contain the yeast homolog of raptor and signals to the actin cytoskeleton through PKC1. Consistent with this finding, the rictor-containing mTOR complex contains GbetaL but not raptor and it neither regulates the mTOR effector S6K1 nor is it bound by FKBP12-rapamycin. We find that the rictor-mTOR complex modulates the phosphorylation of Protein Kinase C alpha (PKCalpha) and the actin cytoskeleton, suggesting that this aspect of TOR signaling is conserved between yeast and mammals.
Molecular Cell | 2003
Do Hyung Kim; Dos D. Sarbassov; Siraj M. Ali; Robert R. Latek; Kalyani V.P. Guntur; Hediye Erdjument-Bromage; Paul Tempst; David M. Sabatini
mTOR and raptor are components of a signaling pathway that regulates mammalian cell growth in response to nutrients and growth factors. Here, we identify a member of this pathway, a protein named GbetaL that binds to the kinase domain of mTOR and stabilizes the interaction of raptor with mTOR. Like mTOR and raptor, GbetaL participates in nutrient- and growth factor-mediated signaling to S6K1, a downstream effector of mTOR, and in the control of cell size. The binding of GbetaL to mTOR strongly stimulates the kinase activity of mTOR toward S6K1 and 4E-BP1, an effect reversed by the stable interaction of raptor with mTOR. Interestingly, nutrients and rapamycin regulate the association between mTOR and raptor only in complexes that also contain GbetaL. Thus, we propose that the opposing effects on mTOR activity of the GbetaL- and raptor-mediated interactions regulate the mTOR pathway.
Journal of Biological Chemistry | 2005
Dos D. Sarbassov; David M. Sabatini
The raptor-mTOR protein complex is a key component of a nutrient-sensitive signaling pathway that regulates cell size by controlling the accumulation of cellular mass. How nutrients regulate signaling through the raptor-mTOR complex is not well known. Here we show that a redox-sensitive mechanism regulates the phosphorylation of the raptor-mTOR effector S6K1, the interaction between raptor and mTOR, and the kinase activity of the raptor-mTOR complex. In cells treated with the oxidizing agents diamide or phenylarsine oxide, S6K1 phosphorylation increased and became insensitive to nutrient deprivation. Conversely, the reducing reagent BAL (British anti-Lewisite, also known as 2,3-dimercapto-1-propanol) inhibits S6K1 phosphorylation and stabilizes the interaction of mTOR and raptor to mimic the state of the complex under nutrient-deprived conditions. Our findings suggest that a redox-based signaling mechanism may participate in regulating the nutrient-sensitive raptor-mTOR complex and pathway.
Cell | 2012
Chia Hsin Chan; Chien Feng Li; Wei Lei Yang; Yuan Gao; Szu Wei Lee; Zizhen Feng; Hsuan Ying Huang; Kelvin K.-C. Tsai; Leo G. Flores; Yiping Shao; John D. Hazle; Dihua Yu; Wenyi Wei; Dos D. Sarbassov; Mien Chie Hung; Keiichi I. Nakayama; Hui Kuan Lin
Akt kinase plays a central role in cell growth, metabolism, and tumorigenesis. The TRAF6 E3 ligase orchestrates IGF-1-mediated Akt ubiquitination and activation. Here, we show that Akt ubiquitination is also induced by activation of ErbB receptors; unexpectedly, and in contrast to IGF-1 induced activation, the Skp2 SCF complex, not TRAF6, is a critical E3 ligase for ErbB-receptor-mediated Akt ubiquitination and membrane recruitment in response to EGF. Skp2 deficiency impairs Akt activation, Glut1 expression, glucose uptake and glycolysis, and breast cancer progression in various tumor models. Moreover, Skp2 overexpression correlates with Akt activation and breast cancer metastasis and serves as a marker for poor prognosis in Her2-positive patients. Finally, Skp2 silencing sensitizes Her2-overexpressing tumors to Herceptin treatment. Our study suggests that distinct E3 ligases are utilized by diverse growth factors for Akt activation and that targeting glycolysis sensitizes Her2-positive tumors to Herceptin treatment.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Kathryn Hentges; Baheya Sirry; Anne Claude Gingeras; Dos D. Sarbassov; Nahum Sonenberg; David M. Sabatini; Andrew S. Peterson
The FKBP-12-rapamycin associated protein (FRAP, also known as mTOR and RAFT-1) is a member of the phosphoinositide kinase related kinase family. FRAP has serine/threonine kinase activity and mediates the cellular response to mitogens through signaling to p70s6 kinase (p70s6k) and 4E-BP1, resulting in an increase in translation of subsets of cellular mRNAs. Translational up-regulation is blocked by inactivation of FRAP signaling by rapamycin, resulting in G1 cell cycle arrest. Rapamycin is used as an immunosuppressant for kidney transplants and is currently under investigation as an antiproliferative agent in tumors because of its ability to block FRAP activity. Although the role of FRAP has been extensively studied in vitro, characterization of mammalian FRAP function in vivo has been limited to the immune system and tumor models. Here we report the identification of a loss-of-function mutation in the mouse FRAP gene, which illustrates a requirement for FRAP activity in embryonic development. Our studies also determined that rapamycin treatment of the early embryo results in a phenotype indistinguishable from the FRAP mutant, demonstrating that rapamycin has teratogenic activity.
Science Signaling | 2011
Chien Hung Chen; Tattym Shaikenov; Timothy R. Peterson; Rakhan Aimbetov; Amangeldy K. Bissenbaev; Szu Wei Lee; Juan Wu; Hui Kuan Lin; Dos D. Sarbassov
Cellular stress attenuates growth factor signaling through a phosphorylation event that blocks substrate access to the kinase complex mTORC2. No Access During Stressful Times Under conditions of cellular stress, cells tend to halt anabolic processes, such as cell growth and proliferation, to conserve resources. mTORC2 (mammalian target of rapamycin complex 2), which mediates its effects through activation of the kinase Akt, is a key signaling complex that promotes anabolic processes. Chen et al. investigated the mechanisms by which mTORC2 activity is inhibited by endoplasmic reticulum (ER) stress. They found that glycogen synthase kinase–3β (GSK-3β), which is activated by ER stress, phosphorylated rictor, a component of mTORC2 that helps to determine substrate specificity for the complex. This phosphorylation event decreased binding of Akt to mTORC2, resulting in reduced activation of Akt and cell proliferation. Furthermore, transformed cells expressing a mutant form of rictor lacking the GSK-3β phosphorylation site formed larger tumors in mice than did those expressing wild-type rictor or a rictor mutant that mimicked a constitutively phosphorylated form. These results define a pathway by which mTORC2 and Akt signaling can be attenuated by cellular stress and provide a potential therapeutic target for limiting cell proliferation (such as in cancer). In response to environmental cues, cells coordinate a balance between anabolic and catabolic pathways. In eukaryotes, growth factors promote anabolic processes and stimulate cell growth, proliferation, and survival through activation of the phosphoinositide 3-kinase (PI3K)–Akt pathway. Akt-mediated phosphorylation of glycogen synthase kinase–3β (GSK-3β) inhibits its enzymatic activity, thereby stimulating glycogen synthesis. We show that GSK-3β itself inhibits Akt by controlling the mammalian target of rapamycin complex 2 (mTORC2), a key activating kinase for Akt. We found that during cellular stress, GSK-3β phosphorylated the mTORC2 component rictor at serine-1235, a modification that interfered with the binding of Akt to mTORC2. The inhibitory effect of GSK-3β on mTORC2-Akt signaling and cell proliferation was eliminated by blocking phosphorylation of rictor at serine-1235. Thus, in response to cellular stress, GSK-3β restrains mTORC2-Akt signaling by specifically phosphorylating rictor, thereby balancing the activities of GSK-3β and Akt, two opposing players in glucose metabolism.
Journal of Clinical Investigation | 2011
Ruiying Zhao; Sai Ching J. Yeung; Jian Chen; Tomoo Iwakuma; Chun Hui Su; Bo Chen; Changju Qu; Fanmao Zhang; You-Tzung Chen; Yu Li Lin; Dung Fang Lee; Feng Jin; Rui Zhu; Tattym Shaikenov; Dos D. Sarbassov; Aysegul A. Sahin; Huamin Wang; Hua Wang; Chien-Chen Lai; Fuu Jen Tsai; Guillermina Lozano; Mong Hong Lee
The mammalian constitutive photomorphogenesis 9 (COP9) signalosome (CSN), a protein complex involved in embryonic development, is implicated in cell cycle regulation and the DNA damage response. Its role in tumor development, however, remains unclear. Here, we have shown that the COP9 subunit 6 (CSN6) gene is amplified in human breast cancer specimens, and the CSN6 protein is upregulated in human breast and thyroid tumors. CSN6 expression positively correlated with expression of murine double minute 2 (MDM2), a potent negative regulator of the p53 tumor suppressor. Expression of CSN6 appeared to prevent MDM2 autoubiquitination at lysine 364, resulting in stabilization of MDM2 and degradation of p53. Mice in which Csn6 was deleted died early in embryogenesis (E7.5). Embryos lacking both Csn6 and p53 survived to later in embryonic development (E10.5), which suggests that loss of p53 could partially rescue the effect of loss of Csn6. Mice heterozygous for Csn6 were sensitized to γ-irradiation-induced, p53-dependent apoptosis in both the thymus and the developing CNS. These mice were also less susceptible than wild-type mice to γ-irradiation-induced tumorigenesis. These results suggest that loss of CSN6 enhances p53-mediated tumor suppression in vivo and that CSN6 plays an important role in regulating DNA damage-associated apoptosis and tumorigenesis through control of the MDM2-p53 signaling pathway.
Molecular Cancer Research | 2010
Delphine R. Boulbes; Chien Hung Chen; Tattym Shaikenov; Nitin K. Agarwal; Timothy R. Peterson; Terri Addona; Hasmik Keshishian; Steven A. Carr; Mark A. Magnuson; David M. Sabatini; Dos D. Sarbassov
In animal cells, growth factors coordinate cell proliferation and survival by regulating the phosphoinositide 3-kinase/Akt signaling pathway. Deregulation of this signaling pathway is common in a variety of human cancers. The PI3K-dependent signaling kinase complex defined as mammalian target of rapamycin complex 2 (mTORC2) functions as a regulatory Ser-473 kinase of Akt. We find that activation of mTORC2 by growth factor signaling is linked to the specific phosphorylation of its component rictor on Thr-1135. The phosphorylation of this site is induced by the growth factor stimulation and expression of the oncogenic forms of ras or PI3K. Rictor phosphorylation is sensitive to the inhibition of PI3K, mTOR, or expression of integrin-linked kinase. The substitution of wild-type rictor with its specific phospho-mutants in rictor null mouse embryonic fibroblasts did not alter the growth factor–dependent phosphorylation of Akt, indicating that the rictor Thr-1135 phosphorylation is not critical in the regulation of the mTORC2 kinase activity. We found that this rictor phosphorylation takes place in the mTORC2-deficient cells, suggesting that this modification might play a role in the regulation of not only mTORC2 but also the mTORC2-independent function of rictor. Mol Cancer Res; 8(6); 896–906. ©2010 AACR.