Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dou is active.

Publication


Featured researches published by Dou.


Pflügers Archiv: European Journal of Physiology | 2007

cGMP-dependent protein kinase in regulation of basal tone and in nitroglycerin- and nitric-oxide-induced relaxation in porcine coronary artery

Xue Qin; Xiaoxu Zheng; Hui Qi; Dou Dou; J. Usha Raj; Yuansheng Gao

Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) may act as a critical enzyme for nitric-oxide-induced vasodilation. In this study, the role of PKG in regulation of basal tension and in relaxation induced by nitrovasodilators in coronary arteries was determined. Under basal conditions, Rp-8-Br-PET-cGMPS, a specific PKG inhibitor, evoked a significant contraction of isolated porcine coronary arteries, which was prevented by nitro-l-arginine or the removal of the endothelium. Relaxation to nitroglycerin and (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA NONOate) in vessels preconstricted with U46619 was largely abolished by 1H-[1,2,4]oxadiazolo[4,3]quinoxalin-1-one (ODQ) and inhibited by 48 to 79% by Rp-8-Br-PET-cGMPS. Relaxation of the vessels to 8-Br-cGMP was inhibited by 56% by Rp-8-Br-PET-cGMPS. The basal activity of PKG but not that of cyclic adenosine monophosphate-dependent protein kinase (PKA) was inhibited by nitro-l-arginine, ODQ, or Rp-8-Br-PET-cGMPS. The activity of PKG but not that of PKA was increased by nitroglycerin and DETA NONOate in intact vessels and increased by cGMP in the tissue homogenates. These effects were abolished by Rp-8-Br-PET-cGMPS but not by myristoylated PKI, a specific inhibitor of PKA. These results suggest that in porcine coronary arteries, PKG is involved in the regulation of basal tension and plays a primary role in relaxation induced by nitrovasodilators, whereas PKA may play a minor role.


Cardiovascular Research | 2010

Degradation of leucine zipper-positive isoform of MYPT1 may contribute to development of nitrate tolerance

Dou Dou; Huijuan Ma; Xiaoxu Zheng; Lei Ying; Yixuan Guo; Xiaoxing Yu; Yuansheng Gao

AIMS A depressed cGMP-dependent protein kinase (PKG) activity is implicated in nitrate tolerance. The present study determines whether the leucine zipper-positive (LZ+) isoform of myosin phosphatase target subunit 1 (MYPT1), a key target protein for PKG actions, is involved in the development of nitrate tolerance. METHODS AND RESULTS Nitrate tolerance in in vitro preparations was obtained by a 24 h incubation with nitroglycerin (NTG). Nitrate tolerance in in vivo preparations was obtained by subcutaneous injection of mice with NTG, and the aortas were used. Protein levels of total MYPT1, MYPT1 (LZ+), PP1Cdelta, myosin light chain (MLC), and phosphorylated MLC were determined by Western blot analysis. Isometric vessel tension was determined by an organ chamber technique. Protein levels of MYPT1 (LZ+), but not of PP1Cdelta, were significantly reduced in in vitro and in vivo nitrate-tolerant arteries. The decrease in the MYPT1 (LZ+) protein level of coronary artery was also induced by a nitric oxide donor and a cGMP analogue, which was prevented by the inhibitors of soluble guanylyl cyclase and PKG. The decrease in MYPT1 (LZ+) protein levels was not affected by the inhibitor of protein synthesis, but was prevented by the inhibitors of proteasomes. The diminished inhibition of dephosphorylation of MLC as well as the attenuated relaxation of porcine coronary artery and mouse aorta to NTG was improved by proteasome inhibitors. CONCLUSION This study demonstrates that a reduction in the protein level of MYPT1 (LZ+) is involved in nitrate tolerance. This may result in part from a proteasome-dependent degradation of MYPT1 (LZ+).


British Journal of Pharmacology | 2008

Role of cGMP-dependent protein kinase in development of tolerance to nitroglycerine in porcine coronary arteries

Dou Dou; Xiaoxu Zheng; Xue Qin; Hui Qi; Limei Liu; J U Raj; Yuansheng Gao

The cGMP‐dependent protein kinase (PKG) is a key enzyme for nitrovasodilator‐induced vasodilation. The present study was to determine its role in nitrate tolerance.


British Journal of Pharmacology | 2009

Protein kinase G regulates the basal tension and plays a major role in nitrovasodilator-induced relaxation of porcine coronary veins

Hui Qi; Xiaoxu Zheng; Xue Qin; Dou Dou; H Xu; J U Raj; Yuansheng Gao

Coronary venous activity is modulated by endogenous and exogenous nitrovasodilators. The present study was to determine the role of protein kinase G (PKG) in the regulation of the basal tension and nitrovasodilator‐induced relaxation of coronary veins.


Cardiovascular Research | 2011

Role of Sulfhydryl-Dependent Dimerization of Soluble Guanylyl Cyclase In Relaxation of Porcine Coronary Artery to Nitric Oxide

Xiaoxu Zheng; Lei Ying; Juan Liu; Dou Dou; Qiong He; Susan Wai Sum Leung; Ricky Y. K. Man; Paul M. Vanhoutte; Yuansheng Gao

AIMS Soluble guanylyl cyclase (sGC) is a heterodimer. The dimerization of the enzyme is obligatory for its function in mediating actions caused by agents that elevate cyclic guanosine monophosphate (cGMP). The present study aimed to determine whether sGC dimerization is modulated by thiol-reducing agents and whether its dimerization influences relaxations in response to nitric oxide (NO). METHODS AND RESULTS The dimers and monomers of sGC and cGMP-dependent protein kinase (PKG) were analysed by western blotting. The intracellular cGMP content was measured by enzyme-linked immunosorbent assay. Changes in isometric tension were determined in organ chambers. In isolated porcine coronary arteries, the protein levels of sGC dimer were decreased by the thiol reductants dithiothreitol, l-cysteine, reduced l-glutathione and tris(2-carboxyethyl) phosphine. The effect was associated with reduced cGMP elevation and attenuated relaxations in response to nitric oxide donors. The dimerization of sGC and activation of the enzyme were also decreased by dihydrolipoic acid, an endogenous thiol antioxidant. Dithiothreitol at concentrations markedly affecting the dimerization of sGC had no significant effect on the dimerization of PKG or relaxation in response to 8-Br-cGMP. Relaxation of the coronary artery in response to a NO donor was potentiated by hypoxia when sGC was partly inhibited, coincident with an increase in sGC dimer and enhanced cGMP production. These effects were prevented by dithiothreitol and tris(2-carboxyethyl) phosphine. CONCLUSION These results demonstrate that the dimerization of sGC is exquisitely sensitive to thiol reductants compared with that of PKG, which may provide a novel mechanism for thiol-dependent modulation of NO-mediated vasodilatation in conditions such as hypoxia.


Journal of Cell Science | 2012

Hypoxia induces downregulation of soluble guanylyl cyclase β1 by miR-34c-5p

Xiaojian Xu; Shumin Wang; Juan Liu; Dou Dou; Limei Liu; Zhengju Chen; Liping Ye; Huixia Liu; Qiong He; J. Usha Raj; Yuansheng Gao

Summary Soluble guanylyl cyclase (sGC) is the principal receptor for nitric oxide (NO) and crucial for the control of various physiological functions. The &bgr;1 subunit of sGC is obligatory for the biological stability and activity of the sGC heterodimer. MicroRNAs (miRNAs) are important regulators of gene expression and exert great influences on diverse biological activities. The aim of the present study was to determine whether or not the expression of sGC&bgr;1 is specifically regulated by miRNAs. We report that miR-34c-5p directly targets sGC&bgr;1 under hypoxia. Bioinformatics analysis of the sGC&bgr;1 3′-untranslated region (3′-UTR) revealed a putative binding site for miR-34b-5p and miR-34c-5p, but only miR-34c-5p inhibited luciferase activity through interaction with sGC&bgr;1 3′-UTR in HEK293T cells. Site-directed mutagenesis of the putative miR-34c-5p binding site abolished the negative regulation of luciferase expression. Overexpression of miR-34c-5p repressed the expression of sGC&bgr;1 in stable cell lines, which was reversed by miR-34c-5p-specific sponge. Inoculation of mouse lung tissues in vitro with lentivirus bearing miR-34c-5p significantly decreased both the expression of sGC&bgr;1 and NO-stimulated sGC activity, which was also rescued by miR-34c-5p-specific sponge. Furthermore, we identified the putative Sp1-binding site in the promoter region of miR-34c-5p. Luciferase reporter constructs revealed that Sp1 directly binds to the wild-type promoter of miR-34c-5p, which was confirmed by chromatin immunoprecipitation. In summary, these findings reveal that miR-34c-5p directly regulates sGC&bgr;1 expression, and they identify the key transcription factor Sp1 that governs miR-34c-5p expression during hypoxia.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

Increased degradation of MYPT1 contributes to the development of tolerance to nitric oxide in porcine pulmonary artery

Huijuan Ma; Qiong He; Dou Dou; Xiaoxu Zheng; Lei Ying; Yuming Wu; J. Usha Raj; Yuansheng Gao

Myosin phosphatase target subunit 1 (MYPT1) is the regulatory subunit of myosin light chain phosphatase (MLCP). It plays a critical role in vasodilatation induced by cGMP-elevating agents such as nitric oxide (NO). The present study was performed to determine the role of MYPT1 in the development of tolerance of the pulmonary artery to NO. Incubation of isolated porcine pulmonary arteries for 24 or 48 h with DETA NONOate (DETA NO) significantly reduced protein levels of MYPT1 and the leucine zipper-positive (LZ+) isoform of MYPT1 but not that of PP1cdelta. The extent of reduction in total MYPT1 protein level was comparable to that of MYPT1 (LZ+). The decrease in MYPT1 protein caused by 48-h DETA NO incubation was prevented by ODQ, an inhibitor of guanylyl cyclase, and by inhibitors of proteasomes (MG-132 and lactacystin) but was not affected by the inhibitor of protein synthesis, cycloheximide. A reduction in MYPT1 protein was also obtained with 8-bromo-cGMP, but this was prevented by Rp-8-bromo-PET-cGMP [inhibitor of cGMP-dependent protein kinase (PKG)]. Incubation for 48 h with DETA NO also reduced dephosphorylation of myosin light chain and relaxation of the artery in response to DETA NO, which was prevented by MG-132. These results suggest that the reduction in MYPT1 protein contributes to the development of tolerance of pulmonary arteries to NO. This may result from increased degradation of MYPT1 after prolonged PKG activation.


Journal of Cardiovascular Pharmacology | 2013

Sulfhydryl-dependent dimerization and cGMP-mediated vasodilatation.

Dou Dou; Xiaoxu Zheng; Lei Ying; Liping Ye; Yuansheng Gao

Abstract: Sulfhydryl-dependent formation of interprotein disulfide bonds in response to physiological oxidative stimuli is emerging as an important mechanism in the regulation of various biological activities. Soluble guanylyl cyclase (sGC) and cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) are key enzymes for actions caused by cGMP-elevating agents, including nitric oxide (NO). Both sGC and PKG are dimers. The dimerization of sGC is obligatory for its activity, whereas the dimerization of PKG improving its signaling efficacy. sGC dimerization is decreased by endogenous and exogenous thiol reductants, associated with reduced cGMP elevation and attenuated vasodilatation to NO. The dimerization of PKG I&agr; is increased by oxidative stress, coincident with improved PKG signaling and augmented vasodilatation to NO. In coronary arteries, the dimerizations and activities of sGC and PKG are increased by hypoxia, accompanied by enhanced relaxation induced by NO. In contrast, the dimerizations and activities of these enzymes and NO-induced relaxation of pulmonary arteries are reduced by hypoxia. These opposite effects may result from divergent changes in the redox status of cytoplasmic reduced nicotinamide adenine dinucleotide phosphate between coronary and pulmonary arteries in response to hypoxia.


Pflügers Archiv: European Journal of Physiology | 2012

Heterogeneity in relaxation of different sized porcine coronary arteries to nitrovasodilators: role of PKG and MYPT1

Lei Ying; Xiaojian Xu; Juan Liu; Dou Dou; Xiaoxing Yu; Liping Ye; Qiong He; Yuansheng Gao

The present study was to determine the role of the type I isoform of cGMP-dependent protein kinase (PKG I) and its downstream effector myosin phosphatase target subunit 1 (MYPT1) in the responses of different sized coronary arteries to nitrovasodilators. Relaxations of isolated porcine coronary arteries were determined by isometric tension recording technique. Protein levels of PKG I and its effectors were analyzed by Western blotting. The activities of PKG I and MYPT1 were studied by analyzing phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and MYPT1, respectively. Nitroglycerin, DETA NONOate, and 8-Br-cGMP caused greater relaxations in large than in small coronary arteries. Relaxations were attenuated to a greater extent by Rp-8-Br-PET-cGMPS (a PKG inhibitor) in large vs. small arteries. The expressions of PKG I and MYPT1 in large arteries were more abundant than in small arteries. DETA NONOate stimulated phosphorylation of VASP at Ser239 and inhibited phosphorylation of MYPT1 at Thr853 to a greater extent in large than in small arteries. A suppressed phosphorylation of MYPT1 at Thr853 was caused by 8-Br-cGMP in large but not small arteries, which was inhibited by Rp-8-Br-PET-cGMPS. These results suggest that the greater responsiveness of large coronary arteries to nitrovasodilators result in part from greater activities of PKG I and MYPT1. Dysfunction in nitric oxide signaling is implicated in the vulnerability of large coronary arteries to certain disorders such as atherosclerosis and spasm. Augmentation of PKG I–MYPT1 signaling may be of therapeutic benefit for combating these events.


Vascular Pharmacology | 2014

Endothelium-independent hypoxic contraction of porcine coronary arteries may be mediated by activation of phosphoinositide 3-kinase/Akt pathway.

Huixia Liu; Zhengju Chen; Juan Liu; Limei Liu; Yuansheng Gao; Dou Dou

Phosphoinositide 3-kinase (PI3K)/Akt signaling pathway plays an essential role in the regulation of vascular tone. The present study aimed to determine its role in hypoxic coronary vasoconstriction. Isometric tension of isolated porcine coronary arteries was measured with organ chamber technique; the protein levels of phosphorylated and total MLC were examined by Western blotting; the activities of PI3K and Rho kinase were determined by the phosphorylation of their respective target protein Akt and MTPT1. Acute hypoxia induced a rapid contraction followed by a short-term relaxation and then a sustained contraction in porcine coronary arteries. The rapid but not the sustained contraction was abolished by endothelium removal. The sustained contraction was attenuated by inhibitors of PI3K (LY294002) and Akt (Akt-I). The attenuation effect caused by LY294002 was not affected by nifedipine, but was abolished by Y27632, an inhibitor of Rho kinase. The sustained hypoxic contraction was associated with altered phosphorylation of MLC and Akt, which was inhibited by LY294002. The sustained hypoxic contraction was also accompanied with increased phosphorylation of MYPT1, which was inhibited by LY294002 and Y27632. This study demonstrates that sustained hypoxia causes porcine coronary artery to contract in an endothelium-independent manner. An increased PI3K/Akt/Rho kinase signaling may be involved.

Collaboration


Dive into the Dou's collaboration.

Top Co-Authors

Avatar

Yuansheng Gao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge