Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas A. Caldwell is active.

Publication


Featured researches published by Douglas A. Caldwell.


The Astrophysical Journal | 2010

Kepler Mission Design, Realized Photometric Performance, and Early Science

David G. Koch; William J. Borucki; Gibor Basri; Natalie M. Batalha; Timothy M. Brown; Douglas A. Caldwell; Joergen Christensen-Dalsgaard; William D. Cochran; Edna DeVore; Edward W. Dunham; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Alan Gould; Jon M. Jenkins; Y. Kondo; David W. Latham; Jack J. Lissauer; Geoffrey W. Marcy; David G. Monet; Dimitar D. Sasselov; Alan P. Boss; D. E. Brownlee; John Caldwell; Andrea K. Dupree; Steve B. Howell; Hans Kjeldsen; Soeren Meibom; David Morrison; Tobias Owen

The Kepler Mission, launched on 2009 March 6, was designed with the explicit capability to detect Earth-size planets in the habitable zone of solar-like stars using the transit photometry method. Results from just 43 days of data along with ground-based follow-up observations have identified five new transiting planets with measurements of their masses, radii, and orbital periods. Many aspects of stellar astrophysics also benefit from the unique, precise, extended, and nearly continuous data set for a large number and variety of stars. Early results for classical variables and eclipsing stars show great promise. To fully understand the methodology, processes, and eventually the results from the mission, we present the underlying rationale that ultimately led to the flight and ground system designs used to achieve the exquisite photometric performance. As an example of the initial photometric results, we present variability measurements that can be used to distinguish dwarf stars from red giants.


The Astrophysical Journal | 2010

OVERVIEW OF THE KEPLER SCIENCE PROCESSING PIPELINE

Jon M. Jenkins; Douglas A. Caldwell; Hema Chandrasekaran; Joseph D. Twicken; Stephen T. Bryson; Elisa V. Quintana; Bruce D. Clarke; Jie Li; Christopher Allen; Peter Tenenbaum; Hayley Wu; Todd C. Klaus; Christopher K. Middour; Miles T. Cote; Sean McCauliff; Forrest R. Girouard; Jay P. Gunter; Bill Wohler; Jeneen Sommers; Jennifer R. Hall; Akm Kamal Uddin; Michael S. Wu; Paresh Bhavsar; Jeffrey Edward van Cleve; David L. Pletcher; Jessie A. Dotson; Michael R. Haas; Ronald L. Gilliland; David G. Koch; William J. Borucki

The Kepler Mission Science Operations Center (SOC) performs several critical functions including managing the ~156,000 target stars, associated target tables, science data compression tables and parameters, as well as processing the raw photometric data downlinked from the spacecraft each month. The raw data are first calibrated at the pixel level to correct for bias, smear induced by a shutterless readout, and other detector and electronic effects. A background sky flux is estimated from ~4500 pixels on each of the 84 CCD readout channels, and simple aperture photometry is performed on an optimal aperture for each star. Ancillary engineering data and diagnostic information extracted from the science data are used to remove systematic errors in the flux time series that are correlated with these data prior to searching for signatures of transiting planets with a wavelet-based, adaptive matched filter. Stars with signatures exceeding 7.1? are subjected to a suite of statistical tests including an examination of each stars centroid motion to reject false positives caused by background eclipsing binaries. Physical parameters for each planetary candidate are fitted to the transit signature, and signatures of additional transiting planets are sought in the residual light curve. The pipeline is operational, finding planetary signatures and providing robust eliminations of false positives.


The Astrophysical Journal | 2010

Initial Characteristics of Kepler Long Cadence Data for Detecting Transiting Planets

Jon M. Jenkins; Douglas A. Caldwell; Hema Chandrasekaran; Joseph D. Twicken; Stephen T. Bryson; Elisa V. Quintana; Bruce D. Clarke; Jie Li; Christopher Allen; Peter Tenenbaum; Hayley Wu; Todd C. Klaus; Jeffrey Edward van Cleve; Jessie A. Dotson; Michael R. Haas; Ronald L. Gilliland; David G. Koch; William J. Borucki

The Kepler Mission seeks to detect Earth-size planets transiting solar-like stars in its ~115?deg2 field of view over the course of its 3.5 year primary mission by monitoring the brightness of each of ~156,000 Long Cadence stellar targets with a time resolution of 29.4 minutes. We discuss the photometric precision achieved on timescales relevant to transit detection for data obtained in the 33.5 day long Quarter 1 (Q1) observations that ended 2009 June 15. The lower envelope of the photometric precision obtained at various timescales is consistent with expected random noise sources, indicating that Kepler has the capability to fulfill its mission. The Kepler light curves exhibit high precision over a large dynamic range, which will surely permit their use for a large variety of investigations in addition to finding and characterizing planets. We discuss the temporal characteristics of both the raw flux time series and the systematic error-corrected flux time series produced by the Kepler Science Pipeline, and give examples illustrating Keplers large dynamic range and the variety of light curves obtained from the Q1 observations.


The Astrophysical Journal | 2010

INITIAL CHARACTERISTICS OF KEPLER SHORT CADENCE DATA

Ronald L. Gilliland; Jon M. Jenkins; William J. Borucki; Stephen T. Bryson; Douglas A. Caldwell; Bruce D. Clarke; Jessie L. Dotson; Michael R. Haas; Jennifer R. Hall; Todd C. Klaus; David G. Koch; Sean McCauliff; Elisa V. Quintana; Joseph D. Twicken; Jeffrey Edward van Cleve

The Kepler Mission offers two options for observations -- either Long Cadence (LC) used for the bulk of core mission science, or Short Cadence (SC) which is used for applications such as asteroseismology of solar-like stars and transit timing measurements of exoplanets where the 1-minute sampling is critical. We discuss the characteristics of SC data obtained in the 33.5-day long Quarter 1 (Q1) observations with Kepler which completed on 15 June 2009. The truly excellent time series precisions are nearly Poisson limited at 11th magnitude providing per-point measurement errors of 200 parts-per-million per minute. For extremely saturated stars near 7th magnitude precisions of 40 ppm are reached, while for background limited measurements at 17th magnitude precisions of 7 mmag are maintained. We note the presence of two additive artifacts, one that generates regularly spaced peaks in frequency, and one that involves additive offsets in the time domain inversely proportional to stellar brightness. The difference between LC and SC sampling is illustrated for transit observations of TrES-2.


The Astrophysical Journal | 2010

SELECTION, PRIORITIZATION, AND CHARACTERISTICS OF KEPLER TARGET STARS

Natalie M. Batalha; William J. Borucki; David G. Koch; Stephen T. Bryson; Michael R. Haas; Timothy M. Brown; Douglas A. Caldwell; Jennifer R. Hall; Ronald L. Gilliland; David W. Latham; Soren Meibom; David G. Monet

The Kepler Mission began its 3.5 year photometric monitoring campaign in 2009 May on a select group of approximately 150,000 stars. The stars were chosen from the ~ half million in the field of view that are brighter than 16th magnitude. The selection criteria are quantitative metrics designed to optimize the scientific yield of the mission with regard to the detection of Earth-size planets in the habitable zone. This yields more than 90,000 G-type stars on or close to the main sequence, >20, 000 of which are brighter than 14th magnitude. At the temperature extremes, the sample includes approximately 3000 M-type dwarfs and a small sample of O- and B-type MS stars (<200). The small numbers of giants are included in the sample: ~5000 stars with surface gravities log(g) < 3.5. We present a brief summary of the selection process and the stellar populations it yields in terms of surface gravity, effective temperature, and apparent magnitude. In addition to the primary, statistically derived target set, several ancillary target lists were manually generated to enhance the science of the mission, examples being: known eclipsing binaries, open cluster members, and high proper motion stars.


The Astrophysical Journal | 2010

Instrument Performance in Kepler's First Months

Douglas A. Caldwell; Jeffery J. Kolodziejczak; Jeffrey Edward van Cleve; Jon M. Jenkins; P. R. Gazis; Vic S. Argabright; Eric Bachtell; Edward W. Dunham; John C. Geary; Ronald L. Gilliland; Hema Chandrasekaran; Jie Li; Peter Tenenbaum; Hayley Wu; William J. Borucki; Stephen T. Bryson; Jessie L. Dotson; Michael R. Haas; David G. Koch

The Kepler Mission relies on precise differential photometry to detect the 80 parts per million (ppm) signal from an Earth-Sun equivalent transit. Such precision requires superb instrument stability on timescales up to ~2 days and systematic error removal to better than 20 ppm. To this end, the spacecraft and photometer underwent 67 days of commissioning, which included several data sets taken to characterize the photometer performance. Because Kepler has no shutter, we took a series of dark images prior to the dust cover ejection, from which we measured the bias levels, dark current, and read noise. These basic detector properties are essentially unchanged from ground-based tests, indicating that the photometer is working as expected. Several image artifacts have proven more complex than when observed during ground testing, as a result of their interactions with starlight and the greater thermal stability in flight, which causes the temperature-dependent artifact variations to be on the timescales of transits. Because of Keplers unprecedented sensitivity and stability, we have also seen several unexpected systematics that affect photometric precision. We are using the first 43 days of science data to characterize these effects and to develop detection and mitigation methods that will be implemented in the calibration pipeline. Based on early testing, we expect to attain Keplers planned photometric precision over 80%-90% of the field of view.


Astrophysical Journal Supplement Series | 2011

KEPLER MISSION STELLAR AND INSTRUMENT NOISE PROPERTIES

Ronald L. Gilliland; W. J. Chaplin; Edward W. Dunham; Vic S. Argabright; William J. Borucki; Gibor Basri; Stephen T. Bryson; Derek L. Buzasi; Douglas A. Caldwell; Y. Elsworth; Jon M. Jenkins; David G. Koch; Jeffrey Kolodziejczak; A. Miglio; Jeffrey Edward van Cleve; Lucianne M. Walkowicz; William F. Welsh

Kepler mission results are rapidly contributing to fundamentally new discoveries in both the exoplanet and asteroseismology fields. The data returned from Kepler are unique in terms of the number of stars observed, precision of photometry for time series observations, and the temporal extent of high duty cycle observations. As the first mission to provide extensive time series measurements on thousands of stars over months to years at a level hitherto possible only for the Sun, the results from Kepler will vastly increase our knowledge of stellar variability for quiet solar-type stars. Here, we report on the stellar noise inferred on the timescale of a few hours of most interest for detection of exoplanets via transits. By design the data from moderately bright Kepler stars are expected to have roughly comparable levels of noise intrinsic to the stars and arising from a combination of fundamental limitations such as Poisson statistics and any instrument noise. The noise levels attained by Kepler on-orbit exceed by some 50% the target levels for solar-type, quiet stars. We provide a decomposition of observed noise for an ensemble of 12th magnitude stars arising from fundamental terms (Poisson and readout noise), added noise due to the instrument and that intrinsic to the stars. The largest factor in the modestly higher than anticipated noise follows from intrinsic stellar noise. We show that using stellar parameters from galactic stellar synthesis models, and projections to stellar rotation, activity, and hence noise levels reproduce the primary intrinsic stellar noise features.


The Astrophysical Journal | 2010

Discovery and Rossiter-McLaughlin Effect of Exoplanet Kepler-8b

Jon M. Jenkins; William J. Borucki; David G. Koch; Geoffrey W. Marcy; William D. Cochran; William F. Welsh; Gibor Basri; Natalie M. Batalha; Lars A. Buchhave; Timothy M. Brown; Douglas A. Caldwell; Edward W. Dunham; Michael Endl; Debra A. Fischer; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Steve B. Howell; Howard Isaacson; John Asher Johnson; David W. Latham; Jack J. Lissauer; David G. Monet; Jason F. Rowe; Dimitar D. Sasselov; Andrew W. Howard; Phillip J. MacQueen; Jerome A. Orosz; Hema Chandrasekaran; Joseph D. Twicken

We report on the discovery and the Rossiter-McLaughlin (R-M) effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius R_P = 1.419 R_J and a mass M_P = 0.60 M_J, yielding a density of 0.26 g cm^(–3), one of the lowest planetary densities known. The orbital period is P = 3.523 days and the orbital semimajor axis is 0.0483^(+0.0006) _(–0.0012) AU. The star has a large rotational vsin i of 10.5 ± 0.7 km s^(–1) and is relatively faint (V ≈ 13.89 mag); both properties are deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s^(–1), but exhibit a period and phase that are consistent with those implied by transit photometry. We securely detect the R-M effect, confirming the planets existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stellar rotation axis of λ = –26o.4 ± 10o.1, indicating a significant inclination of the planetary orbit. R-M measurements of a large sample of transiting planets from Kepler will provide a statistically robust measure of the true distribution of spin-orbit orientations for hot Jupiters around F and early G stars.


The Astrophysical Journal | 2010

THE KEPLER PIXEL RESPONSE FUNCTION

Stephen T. Bryson; Peter Tenenbaum; Jon M. Jenkins; Hema Chandrasekaran; Todd C. Klaus; Douglas A. Caldwell; Ronald L. Gilliland; Michael R. Haas; Jessie L. Dotson; David G. Koch; William J. Borucki

Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting Solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Keplers optical point spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a stars flux value on any pixel given the stars pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurements of the PRF across the Kepler field of view are described. Two uses of the PRF are presented: the selection of pixels for each star that maximizes the photometric signal to noise ratio for that star, and PRF-fitted centroids which provide robust and accurate stellar positions on the CCD, primarily used for attitude and plate scale tracking. Good knowledge of the PRF has been a critical component for the successful collection of high-precision photometry by Kepler.


The Astrophysical Journal | 2010

Kepler Science Operations

Michael R. Haas; Natalie M. Batalha; Steve Bryson; Douglas A. Caldwell; Jessie L. Dotson; Jennifer R. Hall; Jon M. Jenkins; Todd C. Klaus; David G. Koch; Jeffrey Kolodziejczak; Chris Middour; Marcie Smith; Charles K. Sobeck; Jeremy Stober; Richard Thompson; Jeffrey Edward van Cleve

Keplers mission design includes a comprehensive plan for commissioning and science operations. The commissioning phase completed all critical tasks and accomplished all mission objectives within a week of the pre-launch plan. Since the start of science data collection, the nominal timeline has been interrupted by two safe-mode events, several losses of fine point, and some small pointing adjustments. The most important anomalies are understood and mitigated, so Keplers technical performance has improved significantly over this period, and the prognosis for mission success is excellent. The Kepler data archive is established and hosting data for the science team, guest observers, and the public. The first data to become publicly available include the monthly full-frame images and the light curves for targets that are dropped from the exoplanet program or released after publication. Data are placed in the archive on a quarterly basis; the Kepler Results Catalog will be released annually starting in 2011.

Collaboration


Dive into the Douglas A. Caldwell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald L. Gilliland

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hema Chandrasekaran

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge