Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas Blackwood is active.

Publication


Featured researches published by Douglas Blackwood.


Nature | 2009

Common polygenic variation contributes to risk of schizophrenia and bipolar disorder

Shaun Purcell; Naomi R. Wray; Jennifer Stone; Peter M. Visscher; Michael Conlon O'Donovan; Patrick F. Sullivan; Pamela Sklar; Douglas M. Ruderfer; Andrew McQuillin; Derek W. Morris; Colm O’Dushlaine; Aiden Corvin; Peter Holmans; Michael C. O’Donovan; Stuart MacGregor; Hugh Gurling; Douglas Blackwood; Nicholas John Craddock; Michael Gill; Christina M. Hultman; George Kirov; Paul Lichtenstein; Walter J. Muir; Michael John Owen; Carlos N. Pato; Edward M. Scolnick; David St Clair; Nigel Melville Williams; Lyudmila Georgieva; Ivan Nikolov

Schizophrenia is a severe mental disorder with a lifetime risk of about 1%, characterized by hallucinations, delusions and cognitive deficits, with heritability estimated at up to 80%. We performed a genome-wide association study of 3,322 European individuals with schizophrenia and 3,587 controls. Here we show, using two analytic approaches, the extent to which common genetic variation underlies the risk of schizophrenia. First, we implicate the major histocompatibility complex. Second, we provide molecular genetic evidence for a substantial polygenic component to the risk of schizophrenia involving thousands of common alleles of very small effect. We show that this component also contributes to the risk of bipolar disorder, but not to several non-psychiatric diseases.


Nature | 2008

Rare chromosomal deletions and duplications increase risk of schizophrenia

Jennifer Stone; Michael C. O’Donovan; Hugh Gurling; George Kirov; Douglas Blackwood; Aiden Corvin; Nicholas John Craddock; Michael Gill; Christina M. Hultman; Paul Lichtenstein; Andrew McQuillin; Carlos N. Pato; Douglas M. Ruderfer; Michael John Owen; David St Clair; Patrick F. Sullivan; Pamela Sklar; Shaun Purcell; Joshua M. Korn; Stuart Macgregor; Derek W. Morris; Colm O’Dushlaine; Mark J. Daly; Peter M. Visscher; Peter Holmans; Edward M. Scolnick; Nigel Melville Williams; Lucy Georgieva; Ivan Nikolov; Nadine Norton

Schizophrenia is a severe mental disorder marked by hallucinations, delusions, cognitive deficits and apathy, with a heritability estimated at 73–90% (ref. 1). Inheritance patterns are complex, and the number and type of genetic variants involved are not understood. Copy number variants (CNVs) have been identified in individual patients with schizophrenia and also in neurodevelopmental disorders, but large-scale genome-wide surveys have not been performed. Here we report a genome-wide survey of rare CNVs in 3,391 patients with schizophrenia and 3,181 ancestrally matched controls, using high-density microarrays. For CNVs that were observed in less than 1% of the sample and were more than 100 kilobases in length, the total burden is increased 1.15-fold in patients with schizophrenia in comparison with controls. This effect was more pronounced for rarer, single-occurrence CNVs and for those that involved genes as opposed to those that did not. As expected, deletions were found within the region critical for velo-cardio-facial syndrome, which includes psychotic symptoms in 30% of patients. Associations with schizophrenia were also found for large deletions on chromosome 15q13.3 and 1q21.1. These associations have not previously been reported, and they remained significant after genome-wide correction. Our results provide strong support for a model of schizophrenia pathogenesis that includes the effects of multiple rare structural variants, both genome-wide and at specific loci.


Nature Genetics | 2008

Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder

Manuel A. Ferreira; Michael Conlon O'Donovan; Ian Richard Jones; Douglas M. Ruderfer; Lisa Jones; Jinbo Fan; George Kirov; Roy H. Perlis; Elaine K. Green; Jordan W. Smoller; Detelina Grozeva; Jennifer Stone; Ivan Nikolov; Marian Lindsay Hamshere; Vishwajit L. Nimgaonkar; Valentina Moskvina; Michael E. Thase; Sian Caesar; Gary S. Sachs; Jennifer Franklin; Katherine Gordon-Smith; Kristin Ardlie; Stacey Gabriel; Christine Fraser; Brendan Blumenstiel; Matthew DeFelice; Gerome Breen; Michael Gill; Derek W. Morris; Amanda Elkin

To identify susceptibility loci for bipolar disorder, we tested 1.8 million variants in 4,387 cases and 6,209 controls and identified a region of strong association (rs10994336, P = 9.1 × 10−9) in ANK3 (ankyrin G). We also found further support for the previously reported CACNA1C (alpha 1C subunit of the L-type voltage-gated calcium channel; combined P = 7.0 × 10−8, rs1006737). Our results suggest that ion channelopathies may be involved in the pathogenesis of bipolar disorder.


American Journal of Human Genetics | 2001

Schizophrenia and Affective Disorders—Cosegregation with a Translocation at Chromosome 1q42 That Directly Disrupts Brain-Expressed Genes: Clinical and P300 Findings in a Family

Douglas Blackwood; A. Fordyce; M. Walker; D. St Clair; David J. Porteous; Walter J. Muir

A family with a (1;11)(q42;q14.3) translocation significantly linked to a clinical phenotype that includes schizophrenia and affective disorders is described. This translocation generates a LOD score of 3.6 when the disease phenotype is restricted to schizophrenia, of 4.5 when the disease phenotype is restricted to affective disorders, of 7.1 when relatives with recurrent major depression, with bipolar disorder, or with schizophrenia are all classed as affected. This evidence for linkage is among the strongest reported for a psychiatric disorder. Family members showed no distinctive features by which the psychiatric phenotype could be distinguished from unrelated cases of either schizophrenia or affective disorders, and no physical, neurological, or dysmorphic conditions co-occurred with psychiatric symptoms. Translocation carriers and noncarriers had the same mean intelligence quotient. Translocation carriers were similar to subjects with schizophrenia and different from noncarriers and controls, in showing a significant reduction in the amplitude of the P300 event-related potential (ERP). Furthermore, P300 amplitude reduction and latency prolongation were measured in some carriers of the translocation who had no psychiatric symptoms-a pattern found in other families with multiple members with schizophrenia, in which amplitude of and latency of P300 appear to be trait markers of risk. The results of karyotypic, clinical, and ERP investigations of this family suggest that the recently described genes DISC1 and DISC2, which are directly disrupted by the breakpoint on chromosome 1, may have a role in the development of a disease phenotype that includes schizophrenia as well as unipolar and bipolar affective disorders.


The Lancet | 1990

Association within a family of a balanced autosomal translocation with major mental illness

D. St Clair; Douglas Blackwood; Walter J. Muir; M. Walker; A. Carothers; G. Spowart; C. Gosden; H.J. Evans

282 pedigrees in the MRC Cytogenetics Registry, Edinburgh, with familial autosomal anomalies were examined for the presence of associated mental illness. In one large pedigree there were 23 cases of mental and/or behavioural disorders meeting Research Diagnostic Criteria. 34 of the 77 family members available for cytogenetic analysis carried a balanced translocation t(1:11) (q43,q21). Psychiatric diagnoses had been recorded for 16 of the 34 members with the translocation compared with only 5 of the 43 without it. The lod scores (against chance linkage of the translocation with mental illness) were greatest when the mental disorders in the phenotype were restricted to schizophrenia, schizoaffective disorder, recurrent major depression, and adolescent conduct and emotional disorders. Although the mental illness in this family may not be typical of that in the general population, the findings suggest that the q21-22 region of chromosome 11 may be a promising area to examine for genes predisposing to major mental illness.


Molecular Psychiatry | 2008

Whole-genome association study of bipolar disorder

Pamela Sklar; Jordan W. Smoller; Jinbo Fan; Manuel A. Ferreira; Roy H. Perlis; Vishwajit L. Nimgaonkar; Matthew B. McQueen; Stephen V. Faraone; Andrew Kirby; P. I. W. de Bakker; Matthew N. Ogdie; Michael E. Thase; Gary S. Sachs; Katherine E. O. Todd-Brown; Stacey Gabriel; Carrie Sougnez; Casey Gates; Brendan Blumenstiel; Matthew DeFelice; Kristin Ardlie; J Franklin; Walter J. Muir; Kevin A. McGhee; Donald J. MacIntyre; Alan W. McLean; M VanBeck; Andrew McQuillin; Nick Bass; Matthew Robinson; Jacob Lawrence

We performed a genome-wide association scan in 1461 patients with bipolar (BP) 1 disorder, 2008 controls drawn from the Systematic Treatment Enhancement Program for Bipolar Disorder and the University College London sample collections with successful genotyping for 372 193 single nucleotide polymorphisms (SNPs). Our strongest single SNP results are found in myosin5B (MYO5B; P=1.66 × 10−7) and tetraspanin-8 (TSPAN8; P=6.11 × 10−7). Haplotype analysis further supported single SNP results highlighting MYO5B, TSPAN8 and the epidermal growth factor receptor (MYO5B; P=2.04 × 10−8, TSPAN8; P=7.57 × 10−7 and EGFR; P=8.36 × 10−8). For replication, we genotyped 304 SNPs in family-based NIMH samples (n=409 trios) and University of Edinburgh case–control samples (n=365 cases, 351 controls) that did not provide independent replication after correction for multiple testing. A comparison of our strongest associations with the genome-wide scan of 1868 patients with BP disorder and 2938 controls who completed the scan as part of the Wellcome Trust Case–Control Consortium indicates concordant signals for SNPs within the voltage-dependent calcium channel, L-type, alpha 1C subunit (CACNA1C) gene. Given the heritability of BP disorder, the lack of agreement between studies emphasizes that susceptibility alleles are likely to be modest in effect size and require even larger samples for detection.


Science | 2005

DISC1 and PDE4B Are Interacting Genetic Factors in Schizophrenia That Regulate cAMP Signaling

J. Kirsty Millar; Benjamin S. Pickard; Shaun Mackie; Rachel James; Sheila Christie; Sebastienne R. Buchanan; M. Pat Malloy; Jennifer E. Chubb; Elaine Huston; George S. Baillie; Pippa A. Thomson; Elaine V. Hill; Nicholas J. Brandon; Jean-Christophe Rain; L. Miguel Camargo; Paul J. Whiting; Miles D. Houslay; Douglas Blackwood; Walter J. Muir; David J. Porteous

The disrupted in schizophrenia 1 (DISC1) gene is a candidate susceptibility factor for schizophrenia, but its mechanistic role in the disorder is unknown. Here we report that the gene encoding phosphodiesterase 4B (PDE4B) is disrupted by a balanced translocation in a subject diagnosed with schizophrenia and a relative with chronic psychiatric illness. The PDEs inactivate adenosine 3′,5′-monophosphate (cAMP), a second messenger implicated in learning, memory, and mood. We show that DISC1 interacts with the UCR2 domain of PDE4B and that elevation of cellular cAMP leads to dissociation of PDE4B from DISC1 and an increase in PDE4B activity. We propose a mechanistic model whereby DISC1 sequesters PDE4B in resting cells and releases it in an activated state in response to elevated cAMP.


American Journal of Medical Genetics | 1996

A combined analysis of D22S278 marker alleles in affected sib-pairs: Support for a susceptibility locus for schizophrenia at chromosome 22q12

Michael Gill; Homero Vallada; David Collier; Pak Sham; Peter Alan Holmans; Robin M. Murray; Peter McGuffin; Shinichiro Nanko; Michael John Owen; David E. Housman; Haig H. Kazazian; Gerald Nestadt; Ann E. Pulver; Richard E. Straub; Charles J. MacLean; Dermot Walsh; Kenneth S. Kendler; Lynn E. DeLisi; M Polymeropoulos; Hilary Coon; William Byerley; R. Lofthouse; Elliot S. Gershon; L Golden; T.J. Crow; Robert Freedman; Claudine Laurent; S BodeauPean; Thierry d'Amato; Maurice Jay

Several groups have reported weak evidence for linkage between schizophrenia and genetic markers located on chromosome 22q using the lod score method of analysis. However these findings involved different genetic markers and methods of analysis, and so were not directly comparable. To resolve this issue we have performed a combined analysis of genotypic data from the marker D22S278 in multiply affected schizophrenic families derived from 11 independent research groups worldwide. This marker was chosen because it showed maximum evidence for linkage in three independent datasets (Vallada et al., Am J Med Genet 60:139-146, 1995; Polymeropoulos et al., Neuropsychiatr Genet 54:93-99, 1994; Lasseter et al., Am J Med Genet, 60:172-173, 1995. Using the affected sib-pair method as implemented by the program ESPA, the combined dataset showed 252 alleles shared compared with 188 alleles not share (chi-square 9.31, 1df, P = 0.001) where parental genotype data was completely known. When sib-pairs for whom parental data was assigned according to probability were included the number of alleles shared was 514.1 compared with 437.8 not shared (chi-square 6.12, 1df, P = 0.006). Similar results were obtained when a likelihood ratio method for sib-pair analysis was used. These results indicate that may be a susceptibility locus for schizophrenia at 22q12.


Molecular Psychiatry | 2005

Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population

Pippa A. Thomson; Naomi R. Wray; J. K. Millar; Kathryn L. Evans; S. Le Hellard; A. Condie; Walter J. Muir; Douglas Blackwood; David J. Porteous

The Translin-associated factor X/Disrupted in Schizophrenia 1 (TRAX/DISC) region was first implicated as a susceptibility locus for schizophrenia by analysis of a large Scottish family in which a t(1;11) translocation cosegregates with schizophrenia, bipolar disorder and recurrent major depression. We now report evidence for association between bipolar disorder and schizophrenia and this locus in the general Scottish population. A systematic study of linkage disequilibrium in a representative sample of the Scottish population was undertaken across the 510 kb of TRAX and DISC1. SNPs representing each haplotype block were selected for case–control association studies of both schizophrenia and bipolar disorder. Significant association with bipolar disorder in women P=0.00026 (P=0.0016 in men and women combined) was detected in a region of DISC1. This same region also showed nominally significant association with schizophrenia in both men and women combined, P=0.0056. Two further regions, one in TRAX and the second in DISC1, showed weaker evidence for sex-specific associations of individual haplotypes with bipolar disorder in men and women respectively, P<0.01. Only the association between bipolar women and DISC1 remained significant after correction for multiple testing. This result provides further supporting evidence for DISC1 as a susceptibility factor for both bipolar disorder and schizophrenia, consistent with the diagnoses in the original Scottish translocation family.The Translin-associated factor X/Disrupted in Schizophrenia 1 (TRAX/DISC) region was first implicated as a susceptibility locus for schizophrenia by analysis of a large Scottish family in which a t(1;11) translocation cosegregates with schizophrenia, bipolar disorder and recurrent major depression. We now report evidence for association between bipolar disorder and schizophrenia and this locus in the general Scottish population. A systematic study of linkage disequilibrium in a representative sample of the Scottish population was undertaken across the 510 kb of TRAX and DISC1. SNPs representing each haplotype block were selected for case–control association studies of both schizophrenia and bipolar disorder. Significant association with bipolar disorder in women P=0.00026 (P=0.0016 in men and women combined) was detected in a region of DISC1. This same region also showed nominally significant association with schizophrenia in both men and women combined, P=0.0056. Two further regions, one in TRAX and the second in DISC1, showed weaker evidence for sex-specific associations of individual haplotypes with bipolar disorder in men and women respectively, P<0.01. Only the association between bipolar women and DISC1 remained significant after correction for multiple testing. This result provides further supporting evidence for DISC1 as a susceptibility factor for both bipolar disorder and schizophrenia, consistent with the diagnoses in the original Scottish translocation family.


Molecular Psychiatry | 2001

Genomic structure and localisation within a linkage hotspot of Disrupted In Schizophrenia 1 , a gene disrupted by a translocation segregating with schizophrenia

J. K. Millar; Sheila Christie; Stuart Anderson; Diane Lawson; D Hsiao-Wei Loh; Rebecca S. Devon; Benoit Arveiler; Walter J. Muir; Douglas Blackwood; David J. Porteous

Two overlapping and antiparallel genes on chromosome 1, Disrupted In Schizophrenia 1 and 2 (DISC1 and DISC2), are disrupted by a (1;11)(q42.1;q14.3) translocation which segregates with schizophrenia through at least four generations of a large Scottish family. Consequently, these genes are worthy of further investigation as candidate genes potentially involved in the aetiology of major psychiatric illness. We have constructed a contiguous clone map of PACs and cosmids extending across at least 400 kb of the chromosome 1 translocation breakpoint region and this has provided the basis for examination of the genomic structure of DISC1. The gene consists of thirteen exons, estimated to extend across at least 300 kb of DNA. The antisense gene DISC2 overlaps with exon 9. Exon 11 contains an alternative splice site that removes 66 nucleotides from the open reading frame. The final intron of DISC1 belongs to the rare AT-AC class of introns. We have also mapped marker DIS251 in close proximity to DISC1, localising the gene within a critical region identified by several independent studies. Information regarding the structure of the DISC1 gene will facilitate assessment of its involvement in the aetiology of major mental illness in psychotic individuals unrelated to carriers of the translocation.

Collaboration


Dive into the Douglas Blackwood's collaboration.

Top Co-Authors

Avatar

Walter J. Muir

Royal Edinburgh Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Maclean

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pippa Thomson

Western General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge