Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas D. Lemon is active.

Publication


Featured researches published by Douglas D. Lemon.


Journal of Immunology | 2011

Emergence of Fibroblasts with a Proinflammatory Epigenetically Altered Phenotype in Severe Hypoxic Pulmonary Hypertension

Min Li; Suzette R. Riddle; Maria G. Frid; Karim C. El Kasmi; Timothy A. McKinsey; Ronald J. Sokol; Derek Strassheim; Barbara Meyrick; Michael E. Yeager; Amanda Flockton; B. Alexandre McKeon; Douglas D. Lemon; Todd R. Horn; Adil Anwar; Carlos Barajas; Kurt R. Stenmark

Persistent accumulation of monocytes/macrophages in the pulmonary artery adventitial/perivascular areas of animals and humans with pulmonary hypertension has been documented. The cellular mechanisms contributing to chronic inflammatory responses remain unclear. We hypothesized that perivascular inflammation is perpetuated by activated adventitial fibroblasts, which, through sustained production of proinflammatory cytokines/chemokines and adhesion molecules, induce accumulation, retention, and activation of monocytes/macrophages. We further hypothesized that this proinflammatory phenotype is the result of the abnormal activity of histone-modifying enzymes, specifically, class I histone deacetylases (HDACs). Pulmonary adventitial fibroblasts from chronically hypoxic hypertensive calves (termed PH-Fibs) expressed a constitutive and persistent proinflammatory phenotype defined by high expression of IL-1β, IL-6, CCL2(MCP-1), CXCL12(SDF-1), CCL5(RANTES), CCR7, CXCR4, GM-CSF, CD40, CD40L, and VCAM-1. The proinflammatory phenotype of PH-Fibs was associated with epigenetic alterations as demonstrated by increased activity of HDACs and the findings that class I HDAC inhibitors markedly decreased cytokine/chemokine mRNA expression levels in these cells. PH-Fibs induced increased adhesion of THP-1 monocytes and produced soluble factors that induced increased migration of THP-1 and murine bone marrow-derived macrophages as well as activated monocytes/macrophages to express proinflammatory cytokines and profibrogenic mediators (TIMP1 and type I collagen) at the transcriptional level. Class I HDAC inhibitors markedly reduced the ability of PH-Fibs to induce monocyte migration and proinflammatory activation. The emergence of a distinct adventitial fibroblast population with an epigenetically altered proinflammatory phenotype capable of recruiting, retaining, and activating monocytes/macrophages characterizes pulmonary hypertension-associated vascular remodeling and thus could contribute significantly to chronic inflammatory processes in the pulmonary artery wall.


Circulation Research | 2012

Selective class I histone deacetylase inhibition suppresses hypoxia-induced cardiopulmonary remodeling through an antiproliferative mechanism.

Maria A. Cavasin; Kim Demos-Davies; Todd R. Horn; Lori A. Walker; Douglas D. Lemon; Nicholas Birdsey; Mary C.M. Weiser-Evans; Julie Harral; David Irwin; Adil Anwar; Michael E. Yeager; Min Li; Peter A. Watson; Raphael A. Nemenoff; Peter M. Buttrick; Kurt R. Stenmark; Timothy A. McKinsey

Rationale: Histone deacetylase (HDAC) inhibitors are efficacious in models of hypertension-induced left ventricular heart failure. The consequences of HDAC inhibition in the context of pulmonary hypertension with associated right ventricular cardiac remodeling are poorly understood. Objective: This study was performed to assess the utility of selective small-molecule inhibitors of class I HDACs in a preclinical model of pulmonary hypertension. Methods and Results: Rats were exposed to hypobaric hypoxia for 3 weeks in the absence or presence of a benzamide HDAC inhibitor, MGCD0103, which selectively inhibits class I HDACs 1, 2, and 3. The compound reduced pulmonary arterial pressure more dramatically than tadalafil, a standard-of-care therapy for human pulmonary hypertension that functions as a vasodilator. MGCD0103 improved pulmonary artery acceleration time and reduced systolic notching of the pulmonary artery flow envelope, which suggests a positive impact of the HDAC inhibitor on pulmonary vascular remodeling and stiffening. Similar results were obtained with an independent class I HDAC-selective inhibitor, MS-275. Reduced pulmonary arterial pressure in MGCD0103-treated animals was associated with blunted pulmonary arterial wall thickening because of suppression of smooth muscle cell proliferation. Right ventricular function was maintained in MGCD0103-treated animals. Although the class I HDAC inhibitor only modestly reduced right ventricular hypertrophy, it had multiple beneficial effects on the right ventricle, which included suppression of pathological gene expression, inhibition of proapoptotic caspase activity, and repression of proinflammatory protein expression. Conclusions: By targeting distinct pathogenic mechanisms, isoform-selective HDAC inhibitors have potential as novel therapeutics for pulmonary hypertension that will complement vasodilator standards of care.


Molecular and Cellular Biology | 2008

Protein Kinase D1 Stimulates MEF2 Activity in Skeletal Muscle and Enhances Muscle Performance

Mi Sung Kim; Jens Fielitz; John McAnally; John M. Shelton; Douglas D. Lemon; Timothy A. McKinsey; James A. Richardson; Rhonda Bassel-Duby; Eric N. Olson

ABSTRACT Skeletal muscle consists of type I and type II myofibers, which exhibit different metabolic and contractile properties. Type I fibers display an oxidative metabolism and are resistant to fatigue, whereas type II fibers are primarily glycolytic and suited for rapid bursts of activity. These properties can be modified by changes in workload, activity, and hormonal stimuli, facilitating muscle adaptation to physiological demand. The MEF2 transcription factor promotes the formation of slow-twitch (type I) muscle fibers in response to activity. MEF2 activity is repressed by class II histone deacetylases (HDACs) and is enhanced by calcium-regulated protein kinases that promote the export of class II HDACs from the nucleus to the cytoplasm. However, the identities of skeletal muscle class II HDAC kinases are not well defined. Here we demonstrate that protein kinase D1 (PKD1), a highly effective class II HDAC kinase, is predominantly expressed in type I myofibers and, when misexpressed in type II myofibers, promotes transformation to a type I, slow-twitch, fatigue-resistant phenotype. Conversely, genetic deletion of PKD1 in type I myofibers increases susceptibility to fatigue. PKD1 cooperates with calcineurin to facilitate slow-twitch-fiber transformation. These findings identify PKD1 as a key regulator of skeletal muscle function and phenotype.


Journal of Molecular and Cellular Cardiology | 2011

Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension

Douglas D. Lemon; Todd R. Horn; Maria A. Cavasin; Mark Y. Jeong; Kurt Haubold; Carlin S. Long; David Irwin; Sylvia A. McCune; Eunhee Chung; Leslie A. Leinwand; Timothy A. McKinsey

Small molecule histone deacetylase (HDAC) inhibitors block adverse cardiac remodeling in animal models of heart failure. The efficacious compounds target class I, class IIb and, to a lesser extent, class IIa HDACs. It is hypothesized that a selective inhibitor of a specific HDAC class (or an isoform within that class) will provide a favorable therapeutic window for the treatment of heart failure, although the optimal selectivity profile for such a compound remains unknown. Genetic studies have suggested that class I HDACs promote pathological cardiac remodeling, while class IIa HDACs are protective. In contrast, nothing is known about the function or regulation of class IIb HDACs in the heart. We developed assays to quantify catalytic activity of distinct HDAC classes in left and right ventricular cardiac tissue from animal models of hypertensive heart disease. Class I and IIa HDAC activity was elevated in some but not all diseased tissues. In contrast, catalytic activity of the class IIb HDAC, HDAC6, was consistently increased in stressed myocardium, but not in a model of physiologic hypertrophy. HDAC6 catalytic activity was also induced by diverse extracellular stimuli in cultured cardiac myocytes and fibroblasts. These findings suggest an unforeseen role for HDAC6 in the heart, and highlight the need for pre-clinical evaluation of HDAC6-selective inhibitors to determine whether this HDAC isoform is pathological or protective in the setting of cardiovascular disease.


FEBS Letters | 2010

A novel kinase inhibitor establishes a predominant role for protein kinase D as a cardiac class IIa histone deacetylase kinase

Lauren G. Monovich; Richard B. Vega; Erik Meredith; Karl Miranda; Chang Rao; Michael Paul Capparelli; Douglas D. Lemon; Dillon Phan; Keith A. Koch; Joseph A. Chapo; David B. Hood; Timothy A. McKinsey

Class IIa histone deacetylases (HDACs) repress genes involved in pathological cardiac hypertrophy. The anti‐hypertrophic action of class IIa HDACs is overcome by signals that promote their phosphorylation‐dependent nuclear export. Several kinases have been shown to phosphorylate class IIa HDACs, including calcium/calmodulin‐dependent protein kinase (CaMK), protein kinase D (PKD) and G protein‐coupled receptor kinase (GRK). However, the identity of the kinase(s) responsible for phosphorylating class IIa HDACs during cardiac hypertrophy has remained controversial. We describe a novel and selective small molecule inhibitor of PKD, bipyridyl PKD inhibitor (BPKDi). BPKDi blocks signal‐dependent phosphorylation and nuclear export of class IIa HDACs in cardiomyocytes and concomitantly suppresses hypertrophy of these cells. These studies define PKD as a principal cardiac class IIa HDAC kinase.


Journal of Medicinal Chemistry | 2010

Identification of Potent and Selective Amidobipyridyl Inhibitors of Protein Kinase D

Erik Meredith; Kimberly Beattie; Robin Burgis; Michael Paul Capparelli; Joseph A. Chapo; Lucian DiPietro; Gabriel G. Gamber; Istvan J. Enyedy; David B. Hood; Vinayak Hosagrahara; Charles Jewell; Keith A. Koch; Wendy Lee; Douglas D. Lemon; Timothy A. McKinsey; Karl Miranda; Nikos Pagratis; Dillon Phan; Craig F. Plato; Chang Rao; Olga Rozhitskaya; Nicolas Soldermann; Clayton Springer; Maurice J. van Eis; Richard B. Vega; Wanlin Yan; Qingming Zhu; Lauren G. Monovich

The synthesis and biological evaluation of potent and selective PKD inhibitors are described herein. The compounds described in the present study selectively inhibit PKD among other putative HDAC kinases. The PKD inhibitors of the present study blunt phosphorylation and subsequent nuclear export of HDAC4/5 in response to diverse agonists. These compounds further establish the central role of PKD as an HDAC4/5 kinase and enhance the current understanding of cardiac myocyte signal transduction. The in vivo efficacy of a representative example compound on heart morphology is reported herein.


FEBS Letters | 2015

Promiscuous actions of small molecule inhibitors of the protein kinase D-class IIa HDAC axis in striated muscle

Douglas D. Lemon; Brooke C. Harrison; Todd R. Horn; Matthew S. Stratton; Bradley S. Ferguson; Michael F. Wempe; Timothy A. McKinsey

PKD‐mediated phosphorylation of class IIa HDACs frees the MEF2 transcription factor to activate genes that govern muscle differentiation and growth. Studies of the regulation and function of this signaling axis have involved MC1568 and Gö‐6976, which are small molecule inhibitors of class IIa HDAC and PKD catalytic activity, respectively. We describe unanticipated effects of these compounds. MC1568 failed to inhibit class IIa HDAC catalytic activity in vitro, and exerted divergent effects on skeletal muscle differentiation compared to a bona fide inhibitor of these HDACs. In cardiomyocytes, Gö‐6976 triggered calcium signaling and activated stress‐inducible kinases. Based on these findings, caution is warranted when employing MC1568 and Gö‐6976 as pharmacological tool compounds to assess functions of class IIa HDACs and PKD.


Circulation Research | 2012

Selective Class I HDAC Inhibition Suppresses Hypoxia-Induced Cardiopulmonary Remodeling Through an Anti-Proliferative Mechanism

Maria A. Cavasin; Kim Demos-Davies; Todd R. Horn; Lori A. Walker; Douglas D. Lemon; Nicholas Birdsey; Mary C.M. Weiser-Evans; Jules Harral; David Irwin; Adil Anwar; Michael E. Yeager; Min Li; Peter A. Watson; Raphael A. Nemenoff; Peter M. Buttrick; Kurt R. Stenmark; Timothy A. McKinsey

Rationale: Histone deacetylase (HDAC) inhibitors are efficacious in models of hypertension-induced left ventricular heart failure. The consequences of HDAC inhibition in the context of pulmonary hypertension with associated right ventricular cardiac remodeling are poorly understood. Objective: This study was performed to assess the utility of selective small-molecule inhibitors of class I HDACs in a preclinical model of pulmonary hypertension. Methods and Results: Rats were exposed to hypobaric hypoxia for 3 weeks in the absence or presence of a benzamide HDAC inhibitor, MGCD0103, which selectively inhibits class I HDACs 1, 2, and 3. The compound reduced pulmonary arterial pressure more dramatically than tadalafil, a standard-of-care therapy for human pulmonary hypertension that functions as a vasodilator. MGCD0103 improved pulmonary artery acceleration time and reduced systolic notching of the pulmonary artery flow envelope, which suggests a positive impact of the HDAC inhibitor on pulmonary vascular remodeling and stiffening. Similar results were obtained with an independent class I HDAC-selective inhibitor, MS-275. Reduced pulmonary arterial pressure in MGCD0103-treated animals was associated with blunted pulmonary arterial wall thickening because of suppression of smooth muscle cell proliferation. Right ventricular function was maintained in MGCD0103-treated animals. Although the class I HDAC inhibitor only modestly reduced right ventricular hypertrophy, it had multiple beneficial effects on the right ventricle, which included suppression of pathological gene expression, inhibition of proapoptotic caspase activity, and repression of proinflammatory protein expression. Conclusions: By targeting distinct pathogenic mechanisms, isoform-selective HDAC inhibitors have potential as novel therapeutics for pulmonary hypertension that will complement vasodilator standards of care.


Pediatric Research | 2017

Histone deacetylase adaptation in single ventricle heart disease and a young animal model of right ventricular hypertrophy

Weston W. Blakeslee; Kimberly M. Demos-Davies; Douglas D. Lemon; Katharina M Lutter; Maria A. Cavasin; Sam Payne; Karin Nunley; Carlin S. Long; Timothy A. McKinsey; Shelley D. Miyamoto

BackgroundHistone deacetylase (HDAC) inhibitors are promising therapeutics for various forms of cardiac diseases. The purpose of this study was to assess cardiac HDAC catalytic activity and expression in children with single ventricle (SV) heart disease of right ventricular morphology, as well as in a rodent model of right ventricular hypertrophy (RVH).MethodsHomogenates of right ventricle (RV) explants from non-failing controls and children born with a SV were assayed for HDAC catalytic activity and HDAC isoform expression. Postnatal 1-day-old rat pups were placed in hypoxic conditions, and echocardiographic analysis, gene expression, HDAC catalytic activity, and isoform expression studies of the RV were performed.ResultsClass I, IIa, and IIb HDAC catalytic activity and protein expression were elevated in the hearts of children born with a SV. Hypoxic neonatal rats demonstrated RVH, abnormal gene expression, elevated class I and class IIb HDAC catalytic activity, and protein expression in the RV compared with those in the control.ConclusionsThese data suggest that myocardial HDAC adaptations occur in the SV heart and could represent a novel therapeutic target. Although further characterization of the hypoxic neonatal rat is needed, this animal model may be suitable for preclinical investigations of pediatric RV disease and could serve as a useful model for future mechanistic studies.


Circulation Research | 2012

Selective Class I Histone Deacetylase Inhibition Suppresses Hypoxia-Induced Cardiopulmonary Remodeling Through an Antiproliferative MechanismNovelty and Significance

Maria A. Cavasin; Kim Demos-Davies; Todd R. Horn; Lori A. Walker; Douglas D. Lemon; Nicholas Birdsey; Mary C.M. Weiser-Evans; Julie Harral; David Irwin; Adil Anwar; Michael E. Yeager; Min Li; Peter A. Watson; Raphael A. Nemenoff; Peter M. Buttrick; Kurt R. Stenmark; Timothy A. McKinsey

Rationale: Histone deacetylase (HDAC) inhibitors are efficacious in models of hypertension-induced left ventricular heart failure. The consequences of HDAC inhibition in the context of pulmonary hypertension with associated right ventricular cardiac remodeling are poorly understood. Objective: This study was performed to assess the utility of selective small-molecule inhibitors of class I HDACs in a preclinical model of pulmonary hypertension. Methods and Results: Rats were exposed to hypobaric hypoxia for 3 weeks in the absence or presence of a benzamide HDAC inhibitor, MGCD0103, which selectively inhibits class I HDACs 1, 2, and 3. The compound reduced pulmonary arterial pressure more dramatically than tadalafil, a standard-of-care therapy for human pulmonary hypertension that functions as a vasodilator. MGCD0103 improved pulmonary artery acceleration time and reduced systolic notching of the pulmonary artery flow envelope, which suggests a positive impact of the HDAC inhibitor on pulmonary vascular remodeling and stiffening. Similar results were obtained with an independent class I HDAC-selective inhibitor, MS-275. Reduced pulmonary arterial pressure in MGCD0103-treated animals was associated with blunted pulmonary arterial wall thickening because of suppression of smooth muscle cell proliferation. Right ventricular function was maintained in MGCD0103-treated animals. Although the class I HDAC inhibitor only modestly reduced right ventricular hypertrophy, it had multiple beneficial effects on the right ventricle, which included suppression of pathological gene expression, inhibition of proapoptotic caspase activity, and repression of proinflammatory protein expression. Conclusions: By targeting distinct pathogenic mechanisms, isoform-selective HDAC inhibitors have potential as novel therapeutics for pulmonary hypertension that will complement vasodilator standards of care.

Collaboration


Dive into the Douglas D. Lemon's collaboration.

Top Co-Authors

Avatar

Timothy A. McKinsey

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Todd R. Horn

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Maria A. Cavasin

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Adil Anwar

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

David Irwin

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Kurt R. Stenmark

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Michael E. Yeager

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Min Li

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Kim Demos-Davies

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge