Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria A. Cavasin is active.

Publication


Featured researches published by Maria A. Cavasin.


Circulation Research | 2012

Selective class I histone deacetylase inhibition suppresses hypoxia-induced cardiopulmonary remodeling through an antiproliferative mechanism.

Maria A. Cavasin; Kim Demos-Davies; Todd R. Horn; Lori A. Walker; Douglas D. Lemon; Nicholas Birdsey; Mary C.M. Weiser-Evans; Julie Harral; David Irwin; Adil Anwar; Michael E. Yeager; Min Li; Peter A. Watson; Raphael A. Nemenoff; Peter M. Buttrick; Kurt R. Stenmark; Timothy A. McKinsey

Rationale: Histone deacetylase (HDAC) inhibitors are efficacious in models of hypertension-induced left ventricular heart failure. The consequences of HDAC inhibition in the context of pulmonary hypertension with associated right ventricular cardiac remodeling are poorly understood. Objective: This study was performed to assess the utility of selective small-molecule inhibitors of class I HDACs in a preclinical model of pulmonary hypertension. Methods and Results: Rats were exposed to hypobaric hypoxia for 3 weeks in the absence or presence of a benzamide HDAC inhibitor, MGCD0103, which selectively inhibits class I HDACs 1, 2, and 3. The compound reduced pulmonary arterial pressure more dramatically than tadalafil, a standard-of-care therapy for human pulmonary hypertension that functions as a vasodilator. MGCD0103 improved pulmonary artery acceleration time and reduced systolic notching of the pulmonary artery flow envelope, which suggests a positive impact of the HDAC inhibitor on pulmonary vascular remodeling and stiffening. Similar results were obtained with an independent class I HDAC-selective inhibitor, MS-275. Reduced pulmonary arterial pressure in MGCD0103-treated animals was associated with blunted pulmonary arterial wall thickening because of suppression of smooth muscle cell proliferation. Right ventricular function was maintained in MGCD0103-treated animals. Although the class I HDAC inhibitor only modestly reduced right ventricular hypertrophy, it had multiple beneficial effects on the right ventricle, which included suppression of pathological gene expression, inhibition of proapoptotic caspase activity, and repression of proinflammatory protein expression. Conclusions: By targeting distinct pathogenic mechanisms, isoform-selective HDAC inhibitors have potential as novel therapeutics for pulmonary hypertension that will complement vasodilator standards of care.


Journal of Molecular and Cellular Cardiology | 2014

Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes.

Sarah M. Williams; Lucy Golden-Mason; Bradley S. Ferguson; Katherine B. Schuetze; Maria A. Cavasin; Kim Demos-Davies; Michael E. Yeager; Kurt R. Stenmark; Timothy A. McKinsey

Fibrosis, which is defined as excessive accumulation of fibrous connective tissue, contributes to the pathogenesis of numerous diseases involving diverse organ systems. Cardiac fibrosis predisposes individuals to myocardial ischemia, arrhythmias and sudden death, and is commonly associated with diastolic dysfunction. Histone deacetylase (HDAC) inhibitors block cardiac fibrosis in pre-clinical models of heart failure. However, which HDAC isoforms govern cardiac fibrosis, and the mechanisms by which they do so, remains unclear. Here, we show that selective inhibition of class I HDACs potently suppresses angiotensin II (Ang II)-mediated cardiac fibrosis by targeting two key effector cell populations, cardiac fibroblasts and bone marrow-derived fibrocytes. Class I HDAC inhibition blocks cardiac fibroblast cell cycle progression through derepression of the genes encoding the cyclin-dependent kinase (CDK) inhibitors, p15 and p57. In contrast, class I HDAC inhibitors block agonist-dependent differentiation of fibrocytes through a mechanism involving repression of ERK1/2 signaling. These findings define novel roles for class I HDACs in the control of pathological cardiac fibrosis. Furthermore, since fibrocytes have been implicated in the pathogenesis of a variety of human diseases, including heart, lung and kidney failure, our results suggest broad utility for isoform-selective HDAC inhibitors as anti-fibrotic agents that function, in part, by targeting these circulating mesenchymal cells.


Journal of Molecular and Cellular Cardiology | 2011

Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension

Douglas D. Lemon; Todd R. Horn; Maria A. Cavasin; Mark Y. Jeong; Kurt Haubold; Carlin S. Long; David Irwin; Sylvia A. McCune; Eunhee Chung; Leslie A. Leinwand; Timothy A. McKinsey

Small molecule histone deacetylase (HDAC) inhibitors block adverse cardiac remodeling in animal models of heart failure. The efficacious compounds target class I, class IIb and, to a lesser extent, class IIa HDACs. It is hypothesized that a selective inhibitor of a specific HDAC class (or an isoform within that class) will provide a favorable therapeutic window for the treatment of heart failure, although the optimal selectivity profile for such a compound remains unknown. Genetic studies have suggested that class I HDACs promote pathological cardiac remodeling, while class IIa HDACs are protective. In contrast, nothing is known about the function or regulation of class IIb HDACs in the heart. We developed assays to quantify catalytic activity of distinct HDAC classes in left and right ventricular cardiac tissue from animal models of hypertensive heart disease. Class I and IIa HDAC activity was elevated in some but not all diseased tissues. In contrast, catalytic activity of the class IIb HDAC, HDAC6, was consistently increased in stressed myocardium, but not in a model of physiologic hypertrophy. HDAC6 catalytic activity was also induced by diverse extracellular stimuli in cultured cardiac myocytes and fibroblasts. These findings suggest an unforeseen role for HDAC6 in the heart, and highlight the need for pre-clinical evaluation of HDAC6-selective inhibitors to determine whether this HDAC isoform is pathological or protective in the setting of cardiovascular disease.


Journal of Molecular and Cellular Cardiology | 2013

BET acetyl-lysine binding proteins control pathological cardiac hypertrophy.

Jessica I. Spiltoir; Matthew S. Stratton; Maria A. Cavasin; Kim Demos-Davies; Brian G. Reid; Jun Qi; James E. Bradner; Timothy A. McKinsey

Cardiac hypertrophy is an independent predictor of adverse outcomes in patients with heart failure, and thus represents an attractive target for novel therapeutic intervention. JQ1, a small molecule inhibitor of bromodomain and extraterminal (BET) acetyl-lysine reader proteins, was identified in a high throughput screen designed to discover novel small molecule regulators of cardiomyocyte hypertrophy. JQ1 dose-dependently blocked agonist-dependent hypertrophy of cultured neonatal rat ventricular myocytes (NRVMs) and reversed the prototypical gene program associated with pathological cardiac hypertrophy. JQ1 also blocked left ventricular hypertrophy (LVH) and improved cardiac function in adult mice subjected to transverse aortic constriction (TAC). The BET family consists of BRD2, BRD3, BRD4 and BRDT. BRD4 protein expression was increased during cardiac hypertrophy, and hypertrophic stimuli promoted recruitment of BRD4 to the transcriptional start site (TSS) of the gene encoding atrial natriuretic factor (ANF). Binding of BRD4 to the ANF TSS was associated with increased phosphorylation of local RNA polymerase II. These findings define a novel function for BET proteins as signal-responsive regulators of cardiac hypertrophy, and suggest that small molecule inhibitors of these epigenetic reader proteins have potential as therapeutics for heart failure.


American Journal of Physiology-heart and Circulatory Physiology | 2014

HDAC6 contributes to pathological responses of heart and skeletal muscle to chronic angiotensin-II signaling

Kimberly M. Demos-Davies; Bradley S. Ferguson; Maria A. Cavasin; Jennifer H. Mahaffey; Sarah M. Williams; Jessica I. Spiltoir; Katherine B. Schuetze; Todd R. Horn; Bo Chen; Claudia Ferrara; Beatrice Scellini; Chiara Tesi; Corrado Poggesi; Mark Y. Jeong; Timothy A. McKinsey

Little is known about the function of the cytoplasmic histone deacetylase HDAC6 in striated muscle. Here, we addressed the role of HDAC6 in cardiac and skeletal muscle remodeling induced by the peptide hormone angiotensin II (ANG II), which plays a central role in blood pressure control, heart failure, and associated skeletal muscle wasting. Comparable with wild-type (WT) mice, HDAC6 null mice developed cardiac hypertrophy and fibrosis in response to ANG II. However, whereas WT mice developed systolic dysfunction upon treatment with ANG II, cardiac function was maintained in HDAC6 null mice treated with ANG II for up to 8 wk. The cardioprotective effect of HDAC6 deletion was mimicked in WT mice treated with the small molecule HDAC6 inhibitor tubastatin A. HDAC6 null mice also exhibited improved left ventricular function in the setting of pressure overload mediated by transverse aortic constriction. HDAC6 inhibition appeared to preserve systolic function, in part, by enhancing cooperativity of myofibrillar force generation. Finally, we show that HDAC6 null mice are resistant to skeletal muscle wasting mediated by chronic ANG-II signaling. These findings define novel roles for HDAC6 in striated muscle and suggest potential for HDAC6-selective inhibitors for the treatment of cardiac dysfunction and muscle wasting in patients with heart failure.


Journal of the American Heart Association | 2014

Endoplasmic reticulum stress effector CCAAT/enhancer-binding protein homologous protein (CHOP) regulates chronic kidney disease-induced vascular calcification.

Shinobu Miyazaki-Anzai; Masashi Masuda; Kimberly M. Demos-Davies; Audrey L. Keenan; Sommer J. Saunders; Rumiko Masuda; Kristen L. Jablonski; Maria A. Cavasin; Jessica Kendrick; Michel Chonchol; Timothy A. McKinsey; Moshe Levi; Makoto Miyazaki

Background Cardiovascular diseases such as atherosclerosis and vascular calcification are a major cause of death in patients with chronic kidney disease (CKD). Recently, the long‐awaited results of the Study of Heart and Renal Protection trial were reported. This large randomized clinical trial found that an extensive cholesterol‐lowering therapy through the combination of simvastatin and ezetimibe significantly reduced cardiovascular diseases in a wide range of patients with CKD. However, the mechanism by which this cholesterol‐lowering therapy reduces CKD‐dependent vascular diseases remains elusive. The objective of the present study was to determine the contribution of the oxysterol‐induced pro‐apoptotic transcription factor CCAAT/enhancer‐binding protein homologous protein (CHOP) on the pathogenesis of CKD‐dependent cardiovascular diseases through endoplasmic reticulum stress signaling. Methods and Results CKD increased levels of serum oxysterols such as 7‐ketocholesterol in human patients and ApoE−/− mice. Treatment with simvastatin plus ezetimibe strongly reduced levels of serum oxysterols and attenuated CKD‐dependent atherosclerosis, vascular cell death, vascular calcification, and cardiac dysfunction. This therapy also reduced aortic endoplasmic reticulum stress induced by CKD. The short hairpin RNA‐mediated knockdown of CHOP and activating transcription factor‐4 in vascular smooth muscle cells attenuated oxysterol‐induced mineralization, osteogenic differentiation, and endoplasmic reticulum stress. In addition, CHOP deficiency protected ApoE−/− mice from CKD‐dependent vascular calcification, cardiac dysfunction, and vascular cell death. Conclusions These data reveal that the cholesterol‐lowering therapy of simvastatin plus ezetimibe attenuates CKD‐dependent vascular diseases through a reduction of oxysterol‐mediated endoplasmic reticulum stress. CHOP plays a crucial role in the pathogenesis of CKD‐dependent vascular calcification.


Journal of Pharmacology and Experimental Therapeutics | 2017

Tryptophan hydroxylase 1 Inhibition Impacts Pulmonary Vascular Remodeling in Two Rat Models of Pulmonary Hypertension.

Robert J. Aiello; Patricia-Ann Bourassa; Qing Zhang; Jeffrey Dubins; Daniel R. Goldberg; Stephane De Lombaert; Marc Humbert; Christophe Guignabert; Maria A. Cavasin; Timothy A. McKinsey; Vishwas Paralkar

Pulmonary arterial hypertension (PAH) is a progressive disease defined by a chronic elevation in pulmonary arterial pressure with extensive pulmonary vascular remodeling and perivascular inflammation characterized by an accumulation of macrophages, lymphocytes, dendritic cells, and mast cells. Although the exact etiology of the disease is unknown, clinical as well as preclinical data strongly implicate a role for serotonin (5-HT) in the process. Here, we investigated the chronic effects of pharmacological inhibition of tryptophan hydroxylase 1 (TPH1), the rate-limiting enzyme in peripheral 5-HT biosynthesis, in two preclinical models of pulmonary hypertension (PH), the monocrotaline (MCT) rat and the semaxanib (SUGEN, Medinoah, Suzhou, China)-hypoxia rat. In both PH models, ethyl (S)-8-(2-amino-6-((R)-1-(5-chloro-[1,1′-biphenyl]-2-yl)-2,2,2-trifluoroethoxy)pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane-3-carboxylate and ethyl (S)-8-(2-amino-6-((R)-1-(3′,4′-dimethyl-3-(3-methyl-1 H-pyrazol-1-yl)-[1,1′-biphenyl]-4-yl)-2,2,2-trifluoroethoxy)pyrimidin-4-yl)-2,8-diazaspiro[4.5]decane-3-carboxylate, novel orally active TPH1 inhibitors with nanomolar in vitro potency, decreased serum, gut, and lung 5-HT levels in a dose-dependent manner and significantly reduced pulmonary arterial pressure, and pulmonary vessel wall thickness and occlusion in male rats. In the MCT rat model, decreases in lung 5-HT significantly correlated with reductions in histamine levels and mast cell number (P < 0.001, r2 = 0.88). In contrast, neither ambrisentan nor tadalafil, which are vasodilators approved for the treatment of PAH, reduced mast cell number or 5-HT levels, nor were they as effective in treating the vascular remodeling as were the TPH1 inhibitors. When administered in combination with ambrisentan, the TPH1 inhibitors showed an additive effect on pulmonary vascular remodeling and pressures. These data demonstrate that in addition to reducing vascular remodeling, TPH1 inhibition has the added benefit of reducing the perivascular mast cell accumulation associated with PH.


Journal of Translational Medicine | 2014

Reversal of severe angioproliferative pulmonary arterial hypertension and right ventricular hypertrophy by combined phosphodiesterase-5 and endothelin receptor inhibition.

Maria A. Cavasin; Kimberly M. Demos-Davies; Katherine B. Schuetze; Weston W. Blakeslee; Matthew S. Stratton; Rubin M. Tuder; Timothy A. McKinsey

BackgroundPatients with pulmonary arterial hypertension (PAH) are treated with vasodilators, including endothelin receptor antagonists (ERAs), phosphodiesterase-5 (PDE-5) inhibitors, soluble guanylyl cyclase activators, and prostacyclin. Despite recent advances in pharmacotherapy for individuals with PAH, morbidity and mortality rates in this patient population remain unacceptably high. Here, we tested the hypothesis that combination therapy with two PAH drugs that target distinct biochemical pathways will provide superior efficacy relative to monotherapy in the rat SU5416 plus hypoxia (SU-Hx) model of severe angioproliferative PAH, which closely mimics the human condition.MethodsMale Sprague Dawley rats were injected with a single dose of SU5416, which is a VEGF receptor antagonist, and exposed to hypobaric hypoxia for three weeks. Rats were subsequently housed at Denver altitude and treated daily with the PDE-5 inhibitor, tadalafil (TAD), the type A endothelin receptor (ETA) antagonist, ambrisentan (AMB), or a combination of TAD and AMB for four additional weeks.ResultsMonotherapy with TAD or AMB led to modest reductions in pulmonary arterial pressure (PAP) and right ventricular (RV) hypertrophy. In contrast, echocardiography and invasive hemodynamic measurements revealed that combined TAD/AMB nearly completely reversed pulmonary hemodynamic impairment, RV hypertrophy, and RV functional deficit in SU-Hx rats. Efficacy of TAD/AMB was associated with dramatic reductions in pulmonary vascular remodeling, including suppression of endothelial cell plexiform lesions, which are common in human PAH.ConclusionsCombined therapy with two vasodilators that are approved for the treatment of human PAH provides unprecedented efficacy in the rat SU-Hx preclinical model of severe, angioproliferative PAH.


American Journal of Physiology-cell Physiology | 2013

Roles of histone deacetylation and AMP kinase in regulation of cardiomyocyte PGC-1α gene expression in hypoxia

Angela Ramjiawan; Rushita A. Bagchi; Alexandra Blant; Laura Albak; Maria A. Cavasin; Todd R. Horn; Timothy A. McKinsey; Michael P. Czubryt

The transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a key determinant of cardiac metabolic function by regulating genes governing fatty acid oxidation and mitochondrial biogenesis. PGC-1α expression is reduced in many cardiac diseases, and gene deletion of PGC-1α results in impaired cardiomyocyte metabolism and function. Reduced fuel supply generally induces PGC-1α expression, but the specific role of oxygen deprivation is unclear, and the mechanisms governing PGC-1α gene expression in these situations are poorly understood. During hypoxia of primary rat cardiomyocytes up to 12 h, we found that PGC-1α expression was downregulated via a histone deacetylation-dependent mechanism. Conversely, extended hypoxia to 24 h concomitant with glucose depletion upregulated PGC-1α expression via an AMP-activated protein kinase (AMPK)-mediated mechanism. Our previous work demonstrated that estrogen-related receptor-α (ERRα) regulates PGC-1α expression, and we show here that overexpression of ERRα was sufficient to attenuate PGC-1α downregulation in hypoxia. We confirmed that chronic hypoxia downregulated cardiac PGC-1α expression in a hypoxic but nonischemic hypobaric rat model of pulmonary hypertension. Our data demonstrate that depletion of oxygen or fuel results in repression or induction, respectively, of PGC-1α expression via discrete mechanisms, which may contribute to cardiac energetic derangement during hypoxia, ischemia, and failure.


Pulmonary circulation | 2015

Emerging roles for histone deacetylases in pulmonary hypertension and right ventricular remodeling (2013 Grover Conference series).

Maria A. Cavasin; Kurt R. Stenmark; Timothy A. McKinsey

Reversible lysine acetylation has emerged as a critical mechanism for controlling the function of nucleosomal histones as well as diverse nonhistone proteins. Acetyl groups are conjugated to lysine residues in proteins by histone acetyltransferases and removed by histone deacetylases (HDACs), which are also commonly referred to as lysine deacetylases. Over the past decade, many studies have shown that HDACs play crucial roles in the control of left ventricular (LV) cardiac remodeling in response to stress. Small molecule HDAC inhibitors block pathological hypertrophy and fibrosis and improve cardiac function in various preclinical models of LV failure. Only recently have HDACs been studied in the context of right ventricular (RV) failure, which commonly occurs in patients who experience pulmonary hypertension (PH). Here, we review recent findings with HDAC inhibitors in models of PH and RV remodeling, propose next steps for this newly uncovered area of research, and highlight potential for isoform-selective HDAC inhibitors for the treatment of PH and RV failure.

Collaboration


Dive into the Maria A. Cavasin's collaboration.

Top Co-Authors

Avatar

Timothy A. McKinsey

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Kim Demos-Davies

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Todd R. Horn

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Douglas D. Lemon

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kurt R. Stenmark

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

David Irwin

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Mark Y. Jeong

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Matthew S. Stratton

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Michael E. Yeager

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge