Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas M. Molina is active.

Publication


Featured researches published by Douglas M. Molina.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray

Peter D. Crompton; Matthew A. Kayala; Boubacar Traore; Kassoum Kayentao; Aissata Ongoiba; Greta E. Weiss; Douglas M. Molina; Chad Burk; Michael Waisberg; Algis Jasinskas; Xiaolin Tan; Safiatou Doumbo; Didier Doumtabe; Younoussou Kone; David L. Narum; Xiaowu Liang; Ogobara K. Doumbo; Louis H. Miller; Denise L. Doolan; Pierre Baldi; Philip L. Felgner; Susan K. Pierce

Abs are central to malaria immunity, which is only acquired after years of exposure to Plasmodium falciparum (Pf). Despite the enormous worldwide burden of malaria, the targets of protective Abs and the basis of their inefficient acquisition are unknown. Addressing these knowledge gaps could accelerate malaria vaccine development. To this end, we developed a protein microarray containing ∼23% of the Pf 5,400-protein proteome and used this array to probe plasma from 220 individuals between the ages of 2–10 years and 18–25 years in Mali before and after the 6-month malaria season. Episodes of malaria were detected by passive surveillance over the 8-month study period. Ab reactivity to Pf proteins rose dramatically in children during the malaria season; however, most of this response appeared to be short-lived based on cross-sectional analysis before the malaria season, which revealed only modest incremental increases in Ab reactivity with age. Ab reactivities to 49 Pf proteins measured before the malaria season were significantly higher in 8–10-year-old children who were infected with Pf during the malaria season but did not experience malaria (n = 12) vs. those who experienced malaria (n = 29). This analysis also provided insight into patterns of Ab reactivity against Pf proteins based on the life cycle stage at which proteins are expressed, subcellular location, and other proteomic features. This approach, if validated in larger studies and in other epidemiological settings, could prove to be a useful strategy for better understanding fundamental properties of the human immune response to Pf and for identifying previously undescribed vaccine targets.


Proteomics | 2008

Profiling humoral immune responses to P. falciparum infection with protein microarrays

Denise L. Doolan; Yunxiang Mu; Berkay Unal; Suman Sundaresh; Siddiqua Hirst; Conrad Valdez; Arlo Randall; Douglas M. Molina; Xiaowu Liang; Daniel Freilich; J. Aggrey Oloo; Peter L. Blair; Joao C. Aguiar; Pierre Baldi; D. Huw Davies; Philip L. Felgner

A complete description of the serological response following exposure of humans to complex pathogens is lacking and approaches suitable for accomplishing this are limited. Here we report, using malaria as a model, a method which elucidates the profile of antibodies that develop after natural or experimental infection or after vaccination with attenuated organisms, and which identifies immunoreactive antigens of interest for vaccine development or other applications. Expression vectors encoding 250 Plasmodium falciparum (Pf) proteins were generated by PCR/recombination cloning; the proteins were individually expressed with >90% efficiency in Escherichia coli cell‐free in vitro transcription and translation reactions, and printed directly without purification onto microarray slides. The protein microarrays were probed with human sera from one of four groups which differed in immune status: sterile immunity or no immunity against experimental challenge following vaccination with radiation‐attenuated Pf sporozoites, partial immunity acquired by natural exposure, and no previous exposure to Pf. Overall, 72 highly reactive Pf antigens were identified. Proteomic features associated with immunoreactivity were identified. Importantly, antibody profiles were distinct for each donor group. Information obtained from such analyses will facilitate identifying antigens for vaccine development, dissecting the molecular basis of immunity, monitoring the outcome of whole‐organism vaccine trials, and identifying immune correlates of protection.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Dynamic antibody responses to the Mycobacterium tuberculosis proteome

Shajo Kunnath-Velayudhan; Hugh Salamon; Hui Yun Wang; Amy Davidow; Douglas M. Molina; Vu T. Huynh; Daniela M. Cirillo; Gerd Michel; Elizabeth A. Talbot; Mark D. Perkins; Philip L. Felgner; Xiaowu Liang; Maria L. Gennaro

Considerable effort has been directed toward controlling tuberculosis, which kills almost two million people yearly. High on the research agenda is the discovery of biomarkers of active tuberculosis (TB) for diagnosis and for monitoring treatment outcome. Rational biomarker discovery requires understanding host–pathogen interactions leading to biomarker expression. Here we report a systems immunology approach integrating clinical data and bacterial metabolic and regulatory information with high-throughput detection in human serum of antibodies to the entire Mycobacterium tuberculosis proteome. Sera from worldwide TB suspects recognized approximately 10% of the bacterial proteome. This result defines the M. tuberculosis immunoproteome, which is rich in membrane-associated and extracellular proteins. Additional analyses revealed that during active tuberculosis (i) antibody responses focused on an approximately 0.5% of the proteome enriched for extracellular proteins, (ii) relative target preference varied among patients, and (iii) responses correlated with bacillary burden. These results indicate that the B cell response tracks the evolution of infection and the pathogen burden and replicative state and suggest functions associated with B cell-rich foci seen in tuberculous lung granulomas. Our integrated proteome-scale approach is applicable to other chronic infections characterized by diverse antibody target recognition.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A Burkholderia pseudomallei protein microarray reveals serodiagnostic and cross-reactive antigens

Philip L. Felgner; Matthew A. Kayala; Adam Vigil; Chad Burk; Rie Nakajima-Sasaki; Jozelyn Pablo; Douglas M. Molina; Siddiqua Hirst; Janet S. W. Chew; Dongling Wang; Gladys Tan; Melanie Duffield; Ron Yang; Julien Neel; Narisara Chantratita; Greg Bancroft; Ganjana Lertmemongkolchai; D. Huw Davies; Pierre Baldi; Sharon J. Peacock; Richard W. Titball

Understanding the way in which the immune system responds to infection is central to the development of vaccines and many diagnostics. To provide insight into this area, we fabricated a protein microarray containing 1,205 Burkholderia pseudomallei proteins, probed it with 88 melioidosis patient sera, and identified 170 reactive antigens. This subset of antigens was printed on a smaller array and probed with a collection of 747 individual sera derived from 10 patient groups including melioidosis patients from Northeast Thailand and Singapore, patients with different infections, healthy individuals from the USA, and from endemic and nonendemic regions of Thailand. We identified 49 antigens that are significantly more reactive in melioidosis patients than healthy people and patients with other types of bacterial infections. We also identified 59 cross-reactive antigens that are equally reactive among all groups, including healthy controls from the USA. Using these results we were able to devise a test that can classify melioidosis positive and negative individuals with sensitivity and specificity of 95% and 83%, respectively, a significant improvement over currently available diagnostic assays. Half of the reactive antigens contained a predicted signal peptide sequence and were classified as outer membrane, surface structures or secreted molecules, and an additional 20% were associated with pathogenicity, adaptation or chaperones. These results show that microarrays allow a more comprehensive analysis of the immune response on an antigen-specific, patient-specific, and population-specific basis, can identify serodiagnostic antigens, and contribute to a more detailed understanding of immunogenicity to this pathogen.


Molecular & Cellular Proteomics | 2011

Sterile protective immunity to malaria is associated with a panel of novel P. falciparum antigens

Angela Trieu; Matthew A. Kayala; Chad Burk; Douglas M. Molina; Daniel Freilich; Thomas L. Richie; Pierre Baldi; Philip L. Felgner; Denise L. Doolan

The development of an effective malaria vaccine remains a global public health priority. Less than 0.5% of the Plasmodium falciparum genome has been assessed as potential vaccine targets and candidate vaccines have been based almost exclusively on single antigens. It is possible that the failure to develop a malaria vaccine despite decades of effort might be attributed to this historic focus. To advance malaria vaccine development, we have fabricated protein microarrays representing 23% of the entire P. falciparum proteome and have probed these arrays with plasma from subjects with sterile protection or no protection after experimental immunization with radiation attenuated P. falciparum sporozoites. A panel of 19 pre-erythrocytic stage antigens was identified as strongly associated with sporozoite-induced protective immunity; 16 of these antigens were novel and 85% have been independently identified in sporozoite and/or liver stage proteomic or transcriptomic data sets. Reactivity to any individual antigen did not correlate with protection but there was a highly significant difference in the cumulative signal intensity between protected and not protected individuals. Functional annotation indicates that most of these signature proteins are involved in cell cycle/DNA processing and protein synthesis. In addition, 21 novel blood-stage specific antigens were identified. Our data provide the first evidence that sterile protective immunity against malaria is directed against a panel of novel P. falciparum antigens rather than one antigen in isolation. These results have important implications for vaccine development, suggesting that an efficacious malaria vaccine should be multivalent and targeted at a select panel of key antigens, many of which have not been previously characterized.


Journal of Virology | 2008

Antibody Profiling by Proteome Microarray Reveals the Immunogenicity of the Attenuated Smallpox Vaccine Modified Vaccinia Virus Ankara Is Comparable to That of Dryvax

D. Huw Davies; Linda S. Wyatt; Frances K. Newman; Patricia L. Earl; Sookhee Chun; Jenny E. Hernandez; Douglas M. Molina; Siddiqua Hirst; Bernard Moss; Sharon E. Frey; Philip L. Felgner

ABSTRACT Modified vaccinia virus Ankara (MVA) is a highly attenuated vaccinia virus that is under consideration as an alternative to the conventional smallpox vaccine Dryvax. MVA was attenuated by extensive passage of vaccinia virus Ankara in chicken embryo fibroblasts. Several immunomodulatory genes and genes that influence host range are deleted or mutated, and replication is aborted in the late stage of infection in most nonavian cells. The effect of these mutations on immunogenicity is not well understood. Since the structural genes appear to be intact in MVA, it is hypothesized that critical targets for antibody neutralization have been retained. To test this, we probed microarrays of the Western Reserve (WR) proteome with sera from humans and macaques after MVA and Dryvax vaccination. As most protein sequences of MVA are 97 to 99% identical to those of other vaccinia virus strains, extensive binding cross-reactivity is expected, except for those deleted or truncated. Despite different hosts and immunization regimens, the MVA and Dryvax antibody profiles were broadly similar, with antibodies against membrane and core proteins being the best conserved. The responses to nonstructural proteins were less well conserved, although these are not expected to influence virus neutralization. The broadest antibody response was obtained for hyperimmune rabbits with WR, which is pathogenic in rabbits. These data indicate that, despite the mutations and deletions in MVA, its overall immunogenicity is broadly comparable to that of Dryvax, particularly at the level of antibodies to membrane proteins. The work supports other information suggesting that MVA may be a useful alternative to Dryvax.


Journal of Virology | 2008

An extremely diverse CD4 response to vaccinia virus in humans is revealed by proteome-wide T-cell profiling

Lichen Jing; D. Huw Davies; Tiana M. Chong; Sookhee Chun; Christopher L. McClurkan; Jay Huang; Brian T. Story; Douglas M. Molina; Siddiqua Hirst; Philip L. Felgner; David M. Koelle

ABSTRACT CD4 T cells are required for the maintenance and recall of antiviral CD8 T cells and for antibody responses. Little is known concerning the overall architecture of the CD4 response to complex microbial pathogens. In a whole-proteome approach, 180 predicted open reading frames (ORFs) in the vaccinia virus genome were expressed and tested using responder cells from 20 blood samples from 11 vaccinees. Validation assays established the sensitivity and specificity of the system. Overall, CD4 responses were detected for 122 ORFs (68%). A mean of 39 ORFs were recognized per person (range, 13 to 63). The most frequently recognized ORFS were present in virions, including A3L and A10L (core proteins), WR148 (a fragmented homolog of an orthopoxvirus protein that forms inclusions in cells), H3L (a membrane protein), D13L (a membrane scaffold protein), and L4R (a nucleic acid binding protein). Serum immunoglobulin G profiling by proteome microarray detected responses to 45 (25%) of the ORFs and confirmed recent studies showing a diverse response directed to membrane and nonmembrane antigens. Our results provide the first empirical whole-proteome data set regarding the global CD4 response to full-length proteins in a complex virus and are consistent with the theory that abundant structural proteins are immunodominant.


Malaria Journal | 2015

Submicroscopic and asymptomatic Plasmodium falciparum and Plasmodium vivax infections are common in western Thailand - molecular and serological evidence

Elisabeth Baum; Jetsumon Sattabongkot; Jeeraphat Sirichaisinthop; Kirakorn Kiattibutr; David Huw Davies; Aarti Jain; Eugenia Lo; Ming-Chieh Lee; Arlo Randall; Douglas M. Molina; Xiaowu Liang; Liwang Cui; Philip L. Felgner; Guiyun Yan

BackgroundMalaria is a public health problem in parts of Thailand, where Plasmodium falciparum and Plasmodium vivax are the main causes of infection. In the northwestern border province of Tak parasite prevalence is now estimated to be less than 1% by microscopy. Nonetheless, microscopy is insensitive at low-level parasitaemia. The objective of this study was to assess the current epidemiology of falciparum and vivax malaria in Tak using molecular methods to detect exposure to and infection with parasites; in particular, the prevalence of asymptomatic infections and infections with submicroscopic parasite levels.MethodsThree-hundred microlitres of whole blood from finger-prick were collected into capillary tubes from residents of a sentinel village and from patients at a malaria clinic. Pelleted cellular fractions were screened by quantitative PCR to determine parasite prevalence, while plasma was probed on a protein microarray displaying hundreds of P. falciparum and P. vivax proteins to obtain antibody response profiles in those individuals.ResultsOf 219 samples from the village, qPCR detected 25 (11.4%) Plasmodium sp. infections, of which 92% were asymptomatic and 100% were submicroscopic. Of 61 samples from the clinic patients, 27 (44.3%) were positive by qPCR, of which 25.9% had submicroscopic parasite levels. Cryptic mixed infections, misdiagnosed as single-species infections by microscopy, were found in 7 (25.9%) malaria patients. All sample donors, parasitaemic and non-parasitaemic alike, had serological evidence of parasite exposure, with 100% seropositivity to at least 54 antigens. Antigens significantly associated with asymptomatic infections were P. falciparum MSP2, DnaJ protein, putative E1E2 ATPase, and three others.ConclusionThese findings suggest that parasite prevalence is higher than currently estimated by local authorities based on the standard light microscopy. As transmission levels drop in Thailand, it may be necessary to employ higher throughput and sensitivity methods for parasite detection in the phase of malaria elimination.


The Journal of Infectious Diseases | 2012

Proteome-Scale Antibody Responses and Outcome of Mycobacterium tuberculosis Infection in Nonhuman Primates and in Tuberculosis Patients

Shajo Kunnath-Velayudhan; Amy Davidow; Hui Yun Wang; Douglas M. Molina; Vu T. Huynh; Hugh Salamon; Richard Pine; Gerd Michel; Mark D. Perkins; Liang Xiaowu; Philip L. Felgner; JoAnne L. Flynn; Antonino Catanzaro; Maria L. Gennaro

BACKGROUND Biomarkers of progression from latent Mycobacterium tuberculosis infection to active tuberculosis are needed. We assessed correlations between infection outcome and antibody responses in macaques and humans by high-throughput, proteome-scale serological studies. METHODS Mycobacterium tuberculosis proteome microarrays were probed with serial sera from macaques representing various infection outcomes and with single-point human sera from tuberculosis suspects. Fluorescence intensity data were analyzed by calculating Z scores and associated P values. Temporal changes in macaque antibody responses were analyzed by polynomial regression. Correlations between human responses and sputum bacillary burden were assessed by quantile and hurdle regression. RESULTS Macaque outcome groups exhibited distinct antibody profiles: early, transient responses in latent infection and stable antibody increase in active and reactivation disease. In humans, antibody levels and reactive protein numbers increased with bacillary burden. Responses to a subset of 10 proteins were more tightly associated with disease state than reactivity to the broader reactive proteome. CONCLUSIONS Integration of macaque and human data reveals dynamic properties of antibody responses in relation to outcome and leads to actionable findings for translational research. These include the potential of antibody responses to detect acute infection and preclinical tuberculosis and to identify serodiagnostic proteins for the spectrum of bacillary burden in tuberculosis.


Proteomics | 2010

Genome-wide profiling of humoral immune response to Coxiella burnetii infection by protein microarray

Adam Vigil; Rocio Ortega; Rie Nakajima-Sasaki; Jozelyn Pablo; Douglas M. Molina; Chien-Chung Chao; Hua-Wei Chen; Wei-Mei Ching; Philip L. Felgner

Comprehensive evaluation of the humoral immune response to Coxiella burnetii may identify highly needed diagnostic antigens and potential subunit vaccine candidates. Here we report the construction of a protein microarray containing 1901 C. burnetii ORFs (84% of the entire proteome). This array was probed with Q‐fever patient sera and naïve controls in order to discover C. burnetii‐specific seroreactive antigens. Among the 21 seroreactive antigens identified, 13 were significantly more reactive in Q‐fever cases than naïve controls. The remaining eight antigens were cross‐reactive in both C. burnetii infected and naïve patient sera. An additional 64 antigens displayed variable seroreactivity in Q‐fever patients, and underscore the diversity of the humoral immune response to C. burnetii. Nine of the differentially reactive antigens were validated on an alternative immunostrip platform, demonstrating proof‐of‐concept development of a consistent, safe, and inexpensive diagnostic assay alternative. Furthermore, we report here the identification of several new diagnostic antigens and potential subunit vaccine candidates for the highly infectious category B alphaproteobacteria, C. burnetii.

Collaboration


Dive into the Douglas M. Molina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaowu Liang

University of California

View shared research outputs
Top Co-Authors

Avatar

Jozelyn Pablo

University of California

View shared research outputs
Top Co-Authors

Avatar

D. Huw Davies

University of California

View shared research outputs
Top Co-Authors

Avatar

Li Liang

University of California

View shared research outputs
Top Co-Authors

Avatar

Pierre Baldi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arlo Randall

University of California

View shared research outputs
Top Co-Authors

Avatar

Siddiqua Hirst

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge