Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas N. Stephens is active.

Publication


Featured researches published by Douglas N. Stephens.


IEEE Transactions on Biomedical Engineering | 2011

A Radio-Frequency Coupling Network for Heating of Citrate-Coated Gold Nanoparticles for Cancer Therapy: Design and Analysis

Dustin E. Kruse; Douglas N. Stephens; Heather A. Lindfors; Elizabeth S. Ingham; Eric E. Paoli; Katherine W. Ferrara

Gold nanoparticles (GNPs) are nontoxic, can be functionalized with ligands, and preferentially accumulate in tumors. We have developed a 13.56-MHz RF-electromagnetic field (RFEM) delivery system capable of generating high E-fleld strengths required for noninvasive, noncontact heating of GNPs. The bulk heating and specific heating rates were measured as a function of NP size and concentration. It was found that heating is both size and concentration dependent, with 5 nm particles producing a 50.6 ± 0.2°C temperature rise in 30 s for 25 μg/mL gold (125 W input). The specific heating rate was also size and concentration dependent, with 5 nm particles producing a specific heating rate of 356 ± 78 kW/g gold at 16 μg/mL (125 W input). Furthermore, we demonstrate that cancer cells incubated with GNPs are killed when exposed to 13.56 MHz RF-EM fields. Compared to cells that were not incubated with GNPs, three out of four RF-treated groups showed a significant enhancement of cell death with GNPs (p <; 0.05). GNP-enhanced cell killing appears to require temperatures above 50°C for the experimental parameters used in this study. Transmission electron micrographs show extensive vacuolization with the combination of GNPs and RF treatment.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2003

Coded EXcitation with spectrum inversion (CEXSI) for ultrasound array imaging

Yao Wang; Kurt Metzger; Douglas N. Stephens; Gregory Williams; Scott Brownlie; Matthew O'Donnell

In this paper, a scheme called coded excitation with spectrum inversion (CEXSI) is presented. An established optimal binary code whose spectrum has no nulls and possesses the least variation is encoded as a burst for transmission. Using this optimal code, the decoding filter can be derived directly from its inverse spectrum. Various transmission techniques can be used to improve energy coupling within the system pass-band. We demonstrate its potential to achieve excellent decoding with very low (<80 dB) side-lobes. For a 2.6 /spl mu/s code, an array element with a center frequency of 10 MHz and fractional bandwidth of 38%, range side-lobes of about 40 dB have been achieved experimentally with little compromise in range resolution. The signal-to-noise ratio (SNR) improvement also has been characterized at about 14 dB. Along with simulations and experimental data, we present a formulation of the scheme, according to which CEXSI can be extended to improve SNR in sparse array imaging in general.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2010

A sensitive TLRH targeted imaging technique for ultrasonic molecular imaging

Xiaowen Hu; Dustin E. Kruse; Patrick Sutcliffe; Douglas N. Stephens; Katherine W. Ferrara

The primary goals of ultrasound molecular imaging are the detection and imaging of ultrasound contrast agents (microbubbles), which are bound to specific vascular surface receptors. Imaging methods that can sensitively and selectively detect and distinguish bound microbubbles from freely circulating microbubbles (free microbubbles) and surrounding tissue are critically important for the practical application of ultrasound contrast molecular imaging. Microbubbles excited by low-frequency acoustic pulses emit wide-band echoes with a bandwidth extending beyond 20 MHz; we refer to this technique as transmission at a low frequency and reception at a high frequency (TLRH). Using this wideband, transient echo, we have developed and implemented a targeted imaging technique incorporating a multifrequency colinear array and the Siemens Antares imaging system. The multifrequency colinear array integrates a center 5.4-MHz array, used to receive echoes and produce radiation force, and 2 outer 1.5-MHz arrays used to transmit low-frequency incident pulses. The targeted imaging technique makes use of an acoustic radiation force subsequence to enhance accumulation and a TLRH imaging subsequence to detect bound microbubbles. The radiofrequency (RF) data obtained from the TLRH imaging subsequence are processed to separate echo signatures between tissue, free microbubbles, and bound microbubbles. By imaging biotin-coated microbubbles targeted to avidin-coated cellulose tubes, we demonstrate that the proposed method has a high contrast-to-tissue ratio (up to 34 dB) and a high sensitivity to bound microbubbles (with the ratio of echoes from bound microbubbles versus free microbubbles extending up to 23 dB). The effects of the imaging pulse acoustic pressure, the radiation force subsequence, and the use of various slow-time filters on the targeted imaging quality are studied. The TLRH targeted imaging method is demonstrated in this study to provide sensitive and selective detection of bound microbubbles for ultrasound molecularly targeted imaging.


IEEE Transactions on Biomedical Engineering | 2010

Spatial and Temporal-Controlled Tissue Heating on a Modified Clinical Ultrasound Scanner for Generating Mild Hyperthermia in Tumors

Dustin E. Kruse; Chun Yen Lai; Douglas N. Stephens; Patrick Sutcliffe; Eric E. Paoli; Stephen Barnes; Katherine W. Ferrara

A new system is presented for generating controlled tissue heating with a clinical ultrasound scanner, and initial in vitro and in vivo results are presented that demonstrate both transient and sustained heating in the mild-hyperthermia range of 37°C-42°C. The system consists of a Siemens Antares ultrasound scanner, a custom dual-frequency three-row transducer array and an external temperature feedback control system. The transducer has two outer rows that operate at 1.5 MHz for tissue heating and a center row that operates at 5 MHz for B-mode imaging to guide the therapy. We compare the field maps obtained using a hydrophone against calculations of the ultrasound beam based on monochromatic and linear assumptions. Using the finite-difference time-domain (FDTD) method, we compare predicted time-dependent thermal profiles to measured profiles for soy tofu as a tissue-mimicking phantom. In vitro results show differential heating of 6°C for chicken breast and tofu. In vivo tests of the system were performed on three mice bearing Met-1 tumors, which is a model of aggressive, metastatic, and highly vascular breast cancer. In superficially implanted tumors, we demonstrate controlled heating to 42°C. We show that the system is able to maintain the temperature to within 0.1°C of the desired temperature both in vitro and in vivo.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2010

Noninvasive thermometry assisted by a dual-function ultrasound transducer for mild hyperthermia

Chun Yen Lai; Dustin E. Kruse; Charles F. Caskey; Douglas N. Stephens; Patrick Sutcliffe; Katherine W. Ferrara

Mild hyperthermia is increasingly important for the activation of temperature-sensitive drug delivery vehicles. Noninvasive ultrasound thermometry based on a 2-D speckle tracking algorithm was examined in this study. Here, a commercial ultrasound scanner, a customized co-linear array transducer, and a controlling PC system were used to generate mild hyperthermia. Because the co-linear array transducer is capable of both therapy and imaging at widely separated frequencies, RF image frames were acquired during therapeutic insonation and then exported for off-line analysis. For in vivo studies in a mouse model, before temperature estimation, motion correction was applied between a reference RF frame and subsequent RF frames. Both in vitro and in vivo experiments were examined; in the in vitro and in vivo studies, the average temperature error had a standard deviation of 0.7°C and 0.8°C, respectively. The application of motion correction improved the accuracy of temperature estimation, where the error range was -1.9 to 4.5°C without correction compared with -1.1 to 1.0°C following correction. This study demonstrates the feasibility of combining therapy and monitoring using a commercial system. In the future, real-time temperature estimation will be incorporated into this system.


internaltional ultrasonics symposium | 2009

Forward-looking volumetric intracardiac imaging using a fully integrated CMUT ring array

Amin Nikoozadeh; Omer Oralkan; Mustafa Gencel; Jung Woo Choe; Douglas N. Stephens; Alan de la Rama; Peter Chen; Kai E. Thomenius; Aaron Dentinger; Douglas Glenn Wildes; Kalyanam Shivkumar; Aman Mahajan; Matthew O'Donnell; David J. Sahn; Pierre Khuri-Yakub

Atrial fibrillation is the most common type of cardiac arrhythmia that now affects over 2.2 million adults in the United States alone. Currently fluoroscopy is the most common method for guiding interventional electrophysiological procedures. We are developing a 9-F forward-looking intracardiac ultrasound catheter for real-time volumetric imaging. We designed and fabricated a 64-element 10-MHz CMUT ring array with through-wafer via interconnects. We also designed custom front-end electronics to be closely integrated with the CMUT array at the tip of the catheter for improved SNR. This integrated circuit (IC) is composed of preamplifiers and protection circuitry, and can directly interface a standard imaging system. This multi-channel IC is capable of passing up to ±50-V bipolar pulses. An 8-channel front-end IC was fabricated based on this circuit topology. Additionally, a flexible PCB was designed for the integration of ring array with front-end electronics. We have acquired a PC-based real-time imaging platform and demonstrated real-time imaging with the ring array. We have also shown volume images using off-line full synthetic aperture image reconstruction method. The presented experimental results demonstrate the performance of our forward-looking volumetric intracardiac imaging approach. We are currently working on the final catheter integration and further development of our real-time imaging methods.


Optics Express | 2011

Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis

Yinghua Sun; Yang Sun; Douglas N. Stephens; Hongtao Xie; Jennifer E. Phipps; Ramez Saroufeem; Jeffrey A. Southard; Daniel S. Elson; Laura Marcu

Simultaneous time- and wavelength-resolved fluorescence spectroscopy (STWRFS) was developed and tested for the dynamic characterization of atherosclerotic tissue ex vivo and arterial vessels in vivo. Autofluorescence, induced by a 337 nm, 700 ps pulsed laser, was split to three wavelength sub-bands using dichroic filters, with each sub-band coupled into a different length of optical fiber for temporal separation. STWRFS allows for fast recording/analysis (few microseconds) of time-resolved fluorescence emission in these sub-bands and rapid scanning. Distinct compositions of excised human atherosclerotic aorta were clearly discriminated over scanning lengths of several centimeters based on fluorescence lifetime and the intensity ratio between 390 and 452 nm. Operation of STWRFS blood flow was further validated in pig femoral arteries in vivo using a single-fiber probe integrated with an ultrasound imaging catheter. Current results demonstrate the potential of STWRFS as a tool for real-time optical characterization of arterial tissue composition and for atherosclerosis research and diagnosis.


Journal of Biomedical Optics | 2009

Intraluminal fluorescence spectroscopy catheter with ultrasound guidance

Douglas N. Stephens; Jesung Park; Yang Sun; Thanassis Papaioannou; Laura Marcu

We demonstrate the feasibility of a time-resolved fluorescence spectroscopy (TRFS) technique for intraluminal investigation of arterial vessel composition under intravascular ultrasound (IVUS) guidance. A prototype 1.8-mm (5.4 Fr) catheter combining a side-viewing optical fiber (SVOF) and an IVUS catheter was constructed and tested with in vitro vessel phantoms. The prototype catheter can locate a fluorophore in the phantom vessel wall, steer the SVOF in place, perform blood flushing under flow conditions, and acquire high-quality TRFS data using 337-nm wavelength excitation. The catheter steering capability used for the coregistration of the IVUS image plane and the SVOF beam produce a guiding precision to an arterial phantom wall site location of 0.53+/-0.16 mm. This new intravascular multimodal catheter enables the potential for in vivo arterial plaque composition identification using TRFS.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2012

Volumetric real-time imaging using a CMUT ring array

Jung Woo Choe; Omer Oralkan; Amin Nikoozadeh; Mustafa Gencel; Douglas N. Stephens; Matthew O'Donnell; David J. Sahn; Butrus T. Khuri-Yakub

A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PCbased imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods-flash, classic phased array (CPA), and synthetic phased array (SPA)-were used in the study. For SPA imaging, two techniques to improve the image quality-Hadamard coding and aperture weighting-were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-tonoise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2008

Forward-looking intracardiac ultrasound imaging using a 1-D CMUT array integrated with custom front-end electronics

Amin Nikoozadeh; Ira O. Wygant; Der-Song Lin; Omer Oralkan; A.S. Ergun; Douglas N. Stephens; Kai E. Thomenius; Aaron Dentinger; Douglas Glenn Wildes; Gina Akopyan; Kalyanam Shivkumar; Aman Mahajan; David J. Sahn; Butrus T. Khuri-Yakub

Minimally invasive catheter-based electrophysiological (EP) interventions are becoming a standard procedure in diagnosis and treatment of cardiac arrhythmias. As a result of technological advances that enable small feature sizes and a high level of integration, nonfluoroscopic intracardiac echocardiography (ICE) imaging catheters are attracting increasing attention. ICE catheters improve EP procedural guidance while reducing the undesirable use of fluoroscopy, which is currently the common catheter guidance method. Phased-array ICE catheters have been in use for several years now, although only for side-looking imaging. We are developing a forwardlooking ICE catheter for improved visualization. In this effort, we fabricate a 24-element, fine-pitch 1-D array of capacitive micromachined ultrasonic transducers (CMUT), with a total footprint of 1.73 mm x 1.27 mm. We also design a custom integrated circuit (IC) composed of 24 identical blocks of transmit/ receive circuitry, measuring 2.1 mm x 2.1 mm. The transmit circuitry is capable of delivering 25-V unipolar pulses, and the receive circuitry includes a transimpedance preamplifier followed by an output buffer. The CMUT array and the custom IC are designed to be mounted at the tip of a 10-Fr catheter for high-frame-rate forward-looking intracardiac imaging. Through-wafer vias incorporated in the CMUT array provide access to individual array elements from the back side of the array. We successfully flip-chip bond a CMUT array to the custom IC with 100% yield. We coat the device with a layer of polydimethylsiloxane (PDMS) to electrically isolate the device for imaging in water and tissue. The pulse-echo in water from a total plane reflector has a center frequency of 9.2 MHz with a 96% fractional bandwidth. Finally, we demonstrate the imaging capability of the integrated device on commercial phantoms and on a beating ex vivo rabbit heart (Langendorff model) using a commercial ultrasound imaging system.

Collaboration


Dive into the Douglas N. Stephens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Omer Oralkan

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Aman Mahajan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge