Douglas P. Millay
Cincinnati Children's Hospital Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Douglas P. Millay.
Nature Medicine | 2008
Douglas P. Millay; Michelle A. Sargent; Hanna Osinska; Christopher P. Baines; Elisabeth R. Barton; Grégoire Vuagniaux; H. Lee Sweeney; Jeffrey Robbins; Jeffery D. Molkentin
Muscular dystrophies comprise a diverse group of genetic disorders that lead to muscle wasting and, in many instances, premature death. Many mutations that cause muscular dystrophy compromise the support network that connects myofilament proteins within the cell to the basal lamina outside the cell, rendering the sarcolemma more permeable or leaky. Here we show that deletion of the gene encoding cyclophilin D (Ppif) rendered mitochondria largely insensitive to the calcium overload–induced swelling associated with a defective sarcolemma, thus reducing myofiber necrosis in two distinct models of muscular dystrophy. Mice lacking δ-sarcoglycan (Scgd−/− mice) showed markedly less dystrophic disease in both skeletal muscle and heart in the absence of Ppif. Moreover, the premature lethality associated with deletion of Lama2, encoding the α-2 chain of laminin-2, was rescued, as were other indices of dystrophic disease. Treatment with the cyclophilin inhibitor Debio-025 similarly reduced mitochondrial swelling and necrotic disease manifestations in mdx mice, a model of Duchenne muscular dystrophy, and in Scgd−/− mice. Thus, mitochondrial-dependent necrosis represents a prominent disease mechanism in muscular dystrophy, suggesting that inhibition of cyclophilin D could provide a new pharmacologic treatment strategy for these diseases.
Journal of Biological Chemistry | 2004
Stephanie A. Parsons; Douglas P. Millay; Benjamin J. Wilkins; Orlando F. Bueno; Gretchen Tsika; Joel R. Neilson; Christine M. Liberatore; Katherine E. Yutzey; Gerald R. Crabtree; Richard W. Tsika; Jeffery D. Molkentin
The serine/threonine phosphatase calcineurin is an important regulator of calcium-activated intracellular responses in eukaryotic cells. In higher eukaryotes, calcium/calmodulin-mediated activation of calcineurin facilitates direct dephosphorylation and nuclear translocation of the transcription factor nuclear factor of activated T-cells (NFAT). Recently, controversy has surrounded the role of calcineurin in mediating skeletal muscle cell hypertrophy. Here we examined the ability of calcineurin-deficient mice to undergo skeletal muscle hypertrophic growth following mechanical overload (MOV) stimulation or insulin-like growth factor-1 (IGF-1) stimulation. Two distinct models of calcineurin deficiency were employed: calcineurin Aβ gene-targeted mice, which show a ≈50% reduction in total calcineurin, and calcineurin B1-LoxP-targeted mice crossed with a myosin light chain 1f cre knock-in allele, which show a greater than 80% loss of total calcineurin only in skeletal muscle. Calcineurin Aβ-/- and calcineurin B1-LoxP(fl/fl)-MLC-cre mice show essentially no defects in muscle growth in response to IGF-1 treatment or MOV stimulation, although calcineurin Aβ-/- mice show a basal defect in total fiber number in the plantaris and a mild secondary reduction in growth, consistent with a developmental defect in myogenesis. Both groups of gene-targeted mice show normal increases in Akt activation following MOV or IGF-1 stimulation. However, overload-mediated fiber-type switching was dramatically impaired in calcineurin B1-LoxP(fl/fl)-MLC-cre mice. NFAT-luciferase reporter transgenic mice failed to show a correlation between IGF-1- or MOV-induced hypertrophy and calcineurin-NFAT-dependent signaling in vivo. We conclude that calcineurin expression is important during myogenesis and fiber-type switching, but not for muscle growth in response to hypertrophic stimuli.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Douglas P. Millay; Sanjeewa A. Goonasekera; Michelle A. Sargent; Marjorie Maillet; Bruce J. Aronow; Jeffery D. Molkentin
Muscular dystrophy is a general term encompassing muscle disorders that cause weakness and wasting, typically leading to premature death. Membrane instability, as a result of a genetic disruption within the dystrophin-glycoprotein complex (DGC), is thought to induce myofiber degeneration, although the downstream mechanism whereby membrane fragility leads to disease remains controversial. One potential mechanism that has yet to be definitively proven in vivo is that unregulated calcium influx initiates disease in dystrophic myofibers. Here we demonstrate that calcium itself is sufficient to cause a dystrophic phenotype in skeletal muscle independent of membrane fragility. For example, overexpression of transient receptor potential canonical 3 (TRPC3) and the associated increase in calcium influx resulted in a phenotype of muscular dystrophy nearly identical to that observed in DGC-lacking dystrophic disease models, including a highly similar molecular signature of gene expression changes. Furthermore, transgene-mediated inhibition of TRPC channels in mice dramatically reduced calcium influx and dystrophic disease manifestations associated with the mdx mutation (dystrophin gene) and deletion of the δ-sarcoglycan (Scgd) gene. These results demonstrate that calcium itself is sufficient to induce muscular dystrophy in vivo, and that TRPC channels are key disease initiators downstream of the unstable membrane that characterizes many types of muscular dystrophy.
Journal of Clinical Investigation | 2011
Sanjeewa A. Goonasekera; Chi K. Lam; Douglas P. Millay; Michelle A. Sargent; Roger J. Hajjar; Evangelia G. Kranias; Jeffery D. Molkentin
Muscular dystrophies (MDs) comprise a group of degenerative muscle disorders characterized by progressive muscle wasting and often premature death. The primary defect common to most MDs involves disruption of the dystrophin-glycoprotein complex (DGC). This leads to sarcolemmal instability and Ca(2+) influx, inducing cellular necrosis. Here we have shown that the dystrophic phenotype observed in δ-sarcoglycan–null (Sgcd(–/–)) mice and dystrophin mutant mdx mice is dramatically improved by skeletal muscle–specific overexpression of sarcoplasmic reticulum Ca(2+) ATPase 1 (SERCA1). Rates of myofiber central nucleation, tissue fibrosis, and serum creatine kinase levels were dramatically reduced in Sgcd(–/–) and mdx mice with the SERCA1 transgene, which also rescued the loss of exercise capacity in Sgcd(–/–) mice. Adeno-associated virus–SERCA2a (AAV-SERCA2a) gene therapy in the gastrocnemius muscle of Sgcd(–/–) mice mitigated dystrophic disease. SERCA1 overexpression reversed a defect in sarcoplasmic reticulum Ca(2+) reuptake that characterizes dystrophic myofibers and reduced total cytosolic Ca(2+). Further, SERCA1 overexpression almost completely rescued the dystrophic phenotype in a mouse model of MD driven solely by Ca(2+) influx. Mitochondria isolated from the muscle of SERCA1-Sgcd(–/–) mice were no longer swollen and calpain activation was reduced, suggesting protection from Ca(2+)-driven necrosis. Our results suggest a novel therapeutic approach using SERCA1 to abrogate the altered intracellular Ca(2+) levels that underlie most forms of MD.
American Journal of Pathology | 2009
Douglas P. Millay; Marjorie Maillet; Joseph A. Roche; Michelle A. Sargent; Elizabeth M. McNally; Robert J. Bloch; Jeffery D. Molkentin
Mutations in the gene DYSF, which codes for the protein dysferlin, underlie Miyoshi myopathy and limb-girdle muscular dystrophy 2B in humans and produce a slowly progressing skeletal muscle degenerative disease in mice. Dysferlin is a Ca(2+)-sensing, regulatory protein that is involved in membrane repair after injury. To assess the function of dysferlin in healthy and dystrophic skeletal muscle, we generated skeletal muscle-specific transgenic mice with threefold overexpression of this protein. These mice were phenotypically indistinguishable from wild-type, and more importantly, the transgene completely rescued the muscular dystrophy (MD) disease in Dysf-null A/J mice. The dysferlin transgene rescued all histopathology and macrophage infiltration in skeletal muscle of Dysf(-/-) A/J mice, as well as promoted the rapid recovery of muscle function after forced lengthening contractions. These results indicate that MD in A/J mice is autonomous to skeletal muscle and not initiated by any other cell type. However, overexpression of dysferlin did not improve dystrophic symptoms or membrane instability in the dystrophin-glycoprotein complex-lacking Scgd (delta-sarcoglycan) null mouse, indicating that dysferlin functionality is not a limiting factor underlying membrane repair in other models of MD. In summary, the restoration of dysferlin in skeletal muscle fibers is sufficient to rescue the MD in Dysf-deficient mice, although its mild overexpression does not appear to functionally enhance membrane repair in other models of MD.
Journal of Biological Chemistry | 2007
Stephanie A. Parsons; Douglas P. Millay; Michelle A. Sargent; Francisco J. Naya; Elizabeth M. McNally; H. Lee Sweeney; Jeffery D. Molkentin
Calcineurin (Cn) is a Ca2+/calmodulin-dependent serine/threonine phosphatase that regulates differentiation-specific gene expression in diverse tissues, including the control of fiber-type switching in skeletal muscle. Recent studies have implicated Cn signaling in diminishing skeletal muscle pathogenesis associated with muscle injury or disease-related muscle degeneration. For example, use of the Cn inhibitor cyclosporine A has been shown to delay muscle regeneration following toxin-induced injury and inhibit regeneration in the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy. In contrast, transgenic expression of an activated mutant of Cn in skeletal muscle was shown to increase utrophin expression and reduce overall disease pathology in mdx mice. Here we examine the effect of altered Cn activation in the context of the δ-sarcoglycan-null (scgd-/-) mouse model of limb-girdle muscular dystrophy. In contrast to results discussed in mdx mice, genetic deletion of a loxP-targeted calcineurin B1 (CnB1) gene using a skeletal muscle-specific cre allele in the scgd-/- background substantially reduced skeletal muscle degeneration and histopathology compared with the scgd-/- genotype alone. A similar regression in scgd-dependent disease manifestation was also observed in calcineurin Aβ (CnAβ) gene-targeted mice in both skeletal muscle and heart. Conversely, increased Cn expression using a muscle-specific transgene increased cardiac fibrosis, decreased cardiac ventricular shortening, and increased muscle fiber loss in the quadriceps. Our results suggest that inhibition of Cn may benefit select types of muscular dystrophy.
Neuromuscular Disorders | 2010
Erin R. Wissing; Douglas P. Millay; Grégoire Vuagniaux; Jeffery D. Molkentin
Muscular dystrophy results in the progressive wasting and necrosis of skeletal muscle. Glucocorticoids such as prednisone have emerged as a front-line treatment for many forms of this disease. Recently, Debio-025, a cyclophilin inhibitor that desensitizes the mitochondrial permeability pore and subsequent cellular necrosis, was shown to improve pathology in three different mouse models of muscular dystrophy. However it is not known if Debio-025 can work in conjunction with prednisone, or how it compares against prednisone in mitigating disease in dystrophic mouse models. Here we show that Debio-025 reduced the variations in myofiber cross-sectional areas, decreased fibrosis, and decreased infiltration of activated macrophages more efficiently than prednisone. However the use of prednisone and Debio-025 together had no additional effect on these histopathological indexes. Orally administered Debio-025 also reduced creatine kinase blood levels and improved grip strength in mdx mice after 6 weeks of treatment, and the combination of Debio-025 with prednisone increased muscle function slightly better than prednisone alone. Thus, our results suggest that Debio-025 is as, effective as or slightly better than, prednisone in mitigating muscular dystrophy in the mdx mouse model of disease.
Nature Communications | 2017
Malgorzata E. Quinn; Qingnian Goh; Mitsutoshi Kurosaka; Dilani G. Gamage; Michael Petrany; Vikram Prasad; Douglas P. Millay
Despite the importance of cell fusion for mammalian development and physiology, the factors critical for this process remain to be fully defined, which has severely limited our ability to reconstitute cell fusion. Myomaker (Tmem8c) is a muscle-specific protein required for myoblast fusion. Expression of myomaker in fibroblasts drives their fusion with myoblasts, but not with other myomaker-expressing fibroblasts, highlighting the requirement of additional myoblast-derived factors for fusion. Here we show that Gm7325, which we name myomerger, induces the fusion of myomaker-expressing fibroblasts. Thus, myomaker and myomerger together confer fusogenic activity to otherwise non-fusogenic cells. Myomerger is skeletal muscle-specific and genetic deletion in mice results in a paucity of muscle fibres demonstrating its requirement for normal muscle formation. Myomerger deficient myocytes differentiate and harbour organized sarcomeres but are fusion-incompetent. Our findings identify myomerger as a fundamental myoblast fusion protein and establish a system that begins to reconstitute mammalian cell fusion.
eLife | 2017
Qingnian Goh; Douglas P. Millay
Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy. DOI: http://dx.doi.org/10.7554/eLife.20007.001
Neuromuscular Disorders | 2011
Janaka Wansapura; Douglas P. Millay; R. Scott Dunn; Jeffery D. Molkentin; D. Woodrow Benson
Delta-sarcoglycan (δ-sarcoglycan) null, Scgd(-/-), mice develop cardiac and skeletal muscle histopathological alterations similar to those in humans with limb-girdle muscular dystrophy. The objective of this study was to assess the feasibility of using MRI to investigate cardiac dysfunction in Scgd(-/-) mice. Cardiac MRI of 8 month old Scgd(-/-) and wild type (WT) mice was performed. Compared to WT, Scgd(-/-) mice had significantly lower LV ejection fraction (44±5% vs. 66±4%, p=0.014), lower RV ejection fraction (25±2% vs. 51±3%, p<0.001) lower myocardial circumferential strain, (15.0±0.3% vs. 16.9±0.3%, p=0.007) and RV dilatation (54±3 μL vs. 40±3 μL, p=0.007). The regional circumferential strain also demonstrated significant temporal dyssynchrony between opposing regions of the Scgd(-/-) LV. Our results demonstrate severe cardiac dysfunction in Scgd(-/-) mice at 8 months. The study identifies a set of non-invasive markers that could be used to study efficacy of novel therapeutic agents in dystrophic mice.