Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas R. Gies is active.

Publication


Featured researches published by Douglas R. Gies.


The Astronomical Journal | 1998

ICCD Speckle Observations of Binary Stars. XIX. An Astrometric/Spectroscopic Survey of O Stars

Brian D. Mason; Douglas R. Gies; William I. Hartkopf; William G. Bagnuolo; Theo A. ten Brummelaar; Harold A. McAlister

We present the results of a speckle interferometric survey made with the CHARA speckle camera and 4 m–class telescopes of Galactic O-type stars with V 59% have a visual or spectroscopic companion) but less so among field and especially runaway stars. There are many triple systems among the speckle binaries, and we discuss their possible role in the ejection of stars from clusters. The period distribution of the binaries is bimodal in log P, but we suggest that binaries with periods of years and decades may eventually be found to fill the gap. The mass ratio distribution of the visual binaries increases toward lower mass ratios, but low mass ratio companions are rare among close, spectroscopic binaries (probably because of the difficulty of spectroscopic detection rather than a real deficit). We present distributions of the eccentricity and longitude of periastron for spectroscopic binaries with elliptical orbits, and we find strong evidence of a bias in the longitude of periastron distribution (the Barr effect), which is probably caused by line distortions introduced by circumstellar gas.


The Astrophysical Journal | 1992

Carbon, nitrogen, and oxygen abundances in early B-type stars

Douglas R. Gies; David L. Lambert

We report on a survey of the C, N, and O abundances in a sample of early B-type stars which was undertaken to test Lyubimkovs claim that CN-cycled material is mixed to the surfaces of these stars during their core hydrogen-burning phase. We have obtained equivalent widths of generally weak lines using high signal-to-noise Reticon spectra of 39 stars in four spectral regions. We have derived effective temperatures and gravities for these stars using Stromgren dereddened color indices and Hy line profiles through a comparison with colors and line profiles from Kurucz line-blanketed atmospheres


The Astrophysical Journal | 2012

Stellar Diameters and Temperatures. II. Main-sequence K- and M-stars

Tabetha S. Boyajian; Kaspar von Braun; Gerard T. van Belle; Harold A. McAlister; Theo A. ten Brummelaar; Stephen R. Kane; Philip S. Muirhead; Jeremy Jones; Russel J. White; Gail H. Schaefer; David R. Ciardi; Todd J. Henry; Mercedes Lopez-Morales; Stephen T. Ridgway; Douglas R. Gies; Wei-Chun Jao; Bárbara Rojas-Ayala; J. Robert Parks; Laszlo Sturmann; J. Sturmann; Nils H. Turner; C. Farrington; P. J. Goldfinger; David H. Berger

We present interferometric angular diameter measurements of 21 low-mass, K- and M-dwarfs made with the CHARA Array. This sample is enhanced by adding a collection of radius measurements published in the literature to form a total data set of 33 K-M-dwarfs with diameters measured to better than 5%. We use these data in combination with the Hipparcos parallax and new measurements of the stars bolometric flux to compute absolute luminosities, linear radii, and effective temperatures for the stars. We develop empirical relations for ~K0 to M4 main-sequence stars that link the stellar temperature, radius, and luminosity to the observed (B – V), (V – R), (V – I), (V – J), (V – H), and (V – K) broadband color index and stellar metallicity [Fe/H]. These relations are valid for metallicities ranging from [Fe/H] = –0.5 to +0.1 dex and are accurate to ~2%, ~5%, and ~4% for temperature, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity-dependent transformations in order to properly convert colors into stellar temperatures, radii, and luminosities. Alternatively, we find no sensitivity to metallicity on relations we construct to the global properties of a star omitting color information, e.g., temperature-radius and temperature-luminosity. Thus, we are able to empirically quantify to what order the stars observed color index is impacted by the stellar iron abundance. In addition to the empirical relations, we also provide a representative look-up table via stellar spectral classifications using this collection of data. Robust examinations of single star temperatures and radii compared to evolutionary model predictions on the luminosity-temperature and luminosity-radius planes reveal that models overestimate the temperatures of stars with surface temperatures <5000 K by ~3%, and underestimate the radii of stars with radii <0.7 R_☉ by ~5%. These conclusions additionally suggest that the models over account for the effects that the stellar metallicity may have on the astrophysical properties of an object. By comparing the interferometrically measured radii for the single star population to those of eclipsing binaries, we find that for a given mass, single and binary star radii are indistinguishable. However, we also find that for a given radius, the literature temperatures for binary stars are systematically lower compared to our interferometrically derived temperatures of single stars by ~200 to 300 K. The nature of this offset is dependent on the validation of binary star temperatures, where bringing all measurements to a uniform and correctly calibrated temperature scale is needed to identify any influence stellar activity may have on the physical properties of a star. Lastly, we present an empirically determined H-R diagram using fundamental properties presented here in combination with those in Boyajian et al. for a total of 74 nearby, main-sequence, A- to M-type stars, and define regions of habitability for the potential existence of sub-stellar mass companions in each system.


The Astrophysical Journal | 2005

First results from the chara array. I. An interferometric and spectroscopic study of the fast rotator α leonis (Regulus)

Harold A. McAlister; Theo A. ten Brummelaar; Douglas R. Gies; Wei-kuang Huang; William G. Bagnuolo; Mark A. Shure; J. Sturmann; L. Sturmann; Nils H. Turner; Stuart F. Taylor; David H. Berger; Ellyn K. Baines; Erika D. Grundstrom; Chad E. Ogden; S. T. Ridgway; G. T. van Belle

We report on K-band interferometric observations of the bright, rapidly rotating star Regulus (type B7 V) made with the CHARA Array on Mount Wilson, California. Through a combination of interferometric and spectroscopic measurements, we have determined for Regulus the equatorial and polar diameters and temperatures, the rotational velocity and period, the inclination and position angle of the spin axis, and the gravity darkening coefficient. These first results from the CHARA Array provide the first interferometric measurement of gravity darkening in a rapidly rotating star and represent the first detection of gravity darkening in a star that is not a member of an eclipsing binary system.


The Astrophysical Journal | 2013

Stellar Diameters and Temperatures. III. Main-sequence A, F, G, and K Stars: Additional High-precision Measurements and Empirical Relations

Tabetha S. Boyajian; Kaspar von Braun; Gerard T. van Belle; C. Farrington; Gail H. Schaefer; Jeremy Jones; Russel J. White; Harold A. McAlister; Theo A. ten Brummelaar; Stephen T. Ridgway; Douglas R. Gies; Laszlo Sturmann; J. Sturmann; Nils H. Turner; P. J. Goldfinger; Norm Vargas

Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR_(J)I_(J)JHK), Cousins (R_(C)I_(C)), Kron (R_(K)I_(K)), Sloan (griz), and WISE (W_(3)W_(4)) photometric systems. These relations have an average standard deviation of ~3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T_eff > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only ~2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis.


The Astrophysical Journal | 2006

First Results from the CHARA Array. IV. The Interferometric Radii of Low-Mass Stars

David H. Berger; Douglas R. Gies; Harold A. McAlister; Theo A. ten Brummelaar; Todd J. Henry; J. Sturmann; L. Sturmann; Nils H. Turner; S. T. Ridgway; Jason Paul Aufdenberg; A. M. Merand

We have measured the angular diameters of six M dwarfs with the CHARA Array, a long-baseline optical interferometer located at Mount Wilson Observatory. Spectral types range from M1.0 V to M3.0 Vand linear radii from 0.38 to 0.69 R� . These results are consistent with the seven other M dwarf radii measurements from optical interferometry and with those for 14 stars in eclipsing binary systems. We compare all directly measured M dwarf radii to model predictions and find that current models underestimate the true stellar radii by up to 15%‐20%. The differences are small among the metal-poor stars but become significantly larger with increasing metallicity. This suggests that theoretical models for low-mass stars may be missing some opacity source that alters the computed stellar radii.


The Astrophysical Journal | 2012

STELLAR DIAMETERS AND TEMPERATURES. I. MAIN-SEQUENCE A, F, AND G STARS

Tabetha S. Boyajian; Harold A. McAlister; Gerard T. van Belle; Douglas R. Gies; Theo A. ten Brummelaar; Kaspar von Braun; C. Farrington; P. J. Goldfinger; David Patrick O'Brien; J. Robert Parks; N. D. Richardson; Stephen T. Ridgway; Gail H. Schaefer; Laszlo Sturmann; J. Sturmann; Y. Touhami; Nils H. Turner; Russel J. White

We have executed a survey of nearby, main-sequence A-, F-, and G-type stars with the CHARA Array, successfully measuring the angular diameters of forty-four stars with an average precision of ~1.5%. We present new measures of the bolometric flux, which in turn leads to an empirical determination of the effective temperature for the stars observed. In addition, these CHARA-determined temperatures, radii, and luminosities are fit to Yonsei-Yale model isochrones to constrain the masses and ages of the stars. These results are compared to indirect estimates of these quantities obtained by collecting photometry of the stars and applying them to model atmospheres and evolutionary isochrones. We find that for most cases, the models overestimate the effective temperature by ~1.5%-4% when compared to our directly measured values. The overestimated temperatures and underestimated radii in these works appear to cause an additional offset in the stars surface gravity measurements, which consequently yield higher masses and younger ages, in particular for stars with masses greater than ~1.3 M_☉. Additionally, we compare our measurements to a large sample of eclipsing binary stars, and excellent agreement is seen within both data sets. Finally, we present temperature relations with respect to (B – V) and (V – K) colors as well as spectral type, showing that calibration of effective temperatures with errors ~1% is now possible from interferometric angular diameters of stars.


Astrophysical Journal Supplement Series | 2005

THE EVOLUTIONARY STATUS OF Be STARS: RESULTS FROM A PHOTOMETRIC STUDY OF SOUTHERN OPEN CLUSTERS

M. Virginia McSwain; Douglas R. Gies

Be stars are a class of rapidly rotating B stars with circumstellar disks that cause Balmer and other line emission. There are three possible reasons for the rapid rotation of Be stars: they may have been born as rapid rotators, spun up by binary mass transfer, or spun up during the main-sequence (MS) evolution of B stars. To test the various formation scenarios, we have conducted a photometric survey of 55 open clusters in the southern sky. Of these, five clusters are probably not physically associated groups and our results for two other clusters are not reliable, but we identify 52 definite Be stars and an additional 129 Be candidates in the remaining clusters. We use our results to examine the age and evolutionary dependence of the Be phenomenon. We find an overall increase in the fraction of Be stars with age until 100 Myr, and Be stars are most common among the brightest, most massive B-type stars above the zero-age main sequence (ZAMS). We show that a spin-up phase at the terminal-age main sequence (TAMS) cannot produce the observed distribution of Be stars, but up to 73% of the Be stars detected may have been spun-up by binary mass transfer. Most of the remaining Be stars were likely rapid rotators at birth. Previous studies have suggested that low metallicity and high cluster density may also favor Be star formation. Our results indicate a possible increase in the fraction of Be stars with increasing cluster distance from the Galactic center (in environments of decreasing metallicity). However, the trend is not significant and could be ruled out due to the intrinsic scatter in our data. We also find no relationship between the fraction of Be stars and cluster density.


The Astrophysical Journal | 2006

Stellar Rotation in Young Clusters. I. Evolution of Projected Rotational Velocity Distributions

Wenjin Huang; Douglas R. Gies

Open clusters offer us the means to study stellar properties in samples with well-defined ages and initial chemical composition. Here we present a survey of projected rotational velocities for a large sample of mainly B-type stars in young clusters to study the time evolution of the rotational properties of massive stars. The survey is based on moderate-resolution spectra made with the WIYN 3.5 m and CTIO 4 m telescopes and Hydra multi-object spectrographs, and the target stars are members of 19 young open clusters with an age range of approximately 6-73 Myr. We made fits of the observed lines He I λλ4026, 4387, 4471, and Mg II λ4481, using model theoretical profiles to find projected rotational velocities for a total of 496 OB stars. We find that there are fewer slow rotators among the cluster B-type stars relative to nearby B stars in the field. We present evidence consistent with the idea that the more massive B stars (M > 9 M☉) spin down during their main-sequence phase. However, we also find that the rotational velocity distribution appears to show an increase in the numbers of rapid rotators among clusters with ages of 10 Myr and higher. These rapid rotators appear to be distributed between the zero age and terminal age main-sequence locations in the Hertzsprung-Russell diagram, and thus only a minority of them can be explained as the result of a spin-up at the terminal age main sequence due to core contraction. We suggest instead that some of these rapid rotators may have been spun up through mass transfer in close binary systems.


The Astrophysical Journal | 1998

Hubble Space Telescope Goddard High Resolution Spectrograph Observations of the Be + sdO Binary ϕ Persei*

Douglas R. Gies; William G. Bagnuolo; Elizabeth C. Ferrara; Anthony B. Kaye; Michelle L. Thaller; Laura R. Penny; Geraldine J. Peters

Mass transfer during the evolution of intermediate-mass stars in a close binary system can result in a rejuvenated and spun-up secondary star (which may appear as a rapidly rotating Be star) orbiting an unseen, stripped-down, remnant companion. One of the best candidates for such a system is the long- period (127 days) binary / Per. Here we present new Hubble Space Telescope Goddard High Resolution Spectrograph spectra of / Per in several UV regions that show clearly for the -rst time the spectral signature of the faint remnant companion. We derive a double-lined solution for the radial velocity curve that yields masses of 9.3 ^ 0.3 and 1.14 ^ 0.04 for the Be star and companion, respectively. A M _ M _ Doppler tomographic reconstruction of the secondary spectrum shows a rich spectrum dominated by sharp Fe IV and Fe V lines, similar to those observed in hot sdO stars. Non-LTE spectrum synthesis indicates that the subdwarf has temperature kK and gravity log g \ 4.2 ^ 0.1 and that the T eff \ 53 ^ 3 subdwarfEtoEBe star Nux ratio is 0.165 ^ 0.006 and 0.154 ^ 0.009 for the 1374 and 1647 regions, Ae respectively. The spectrum of the Be primary appears normal for a very rapidly rotating early B-type star, but we argue that the star is overluminous for its mass (perhaps owing to accretion-induced mixing). Additional sharp lines of Fe IV appear when the companion is in the foreground, and we show that these form in a heated region of the Be starIs disk that faces the hot subdwarf. Subject headings: stars: binaries: spectroscopic E stars: emission-line, Be E stars: evolution E stars: individual (/ Persei, HD 10516) E stars: subdwarfs

Collaboration


Dive into the Douglas R. Gies's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura R. Penny

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

Nils H. Turner

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Sturmann

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian D. Mason

National Science Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge