Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gail H. Schaefer is active.

Publication


Featured researches published by Gail H. Schaefer.


The Astrophysical Journal | 2012

Stellar Diameters and Temperatures. II. Main-sequence K- and M-stars

Tabetha S. Boyajian; Kaspar von Braun; Gerard T. van Belle; Harold A. McAlister; Theo A. ten Brummelaar; Stephen R. Kane; Philip S. Muirhead; Jeremy Jones; Russel J. White; Gail H. Schaefer; David R. Ciardi; Todd J. Henry; Mercedes Lopez-Morales; Stephen T. Ridgway; Douglas R. Gies; Wei-Chun Jao; Bárbara Rojas-Ayala; J. Robert Parks; Laszlo Sturmann; J. Sturmann; Nils H. Turner; C. Farrington; P. J. Goldfinger; David H. Berger

We present interferometric angular diameter measurements of 21 low-mass, K- and M-dwarfs made with the CHARA Array. This sample is enhanced by adding a collection of radius measurements published in the literature to form a total data set of 33 K-M-dwarfs with diameters measured to better than 5%. We use these data in combination with the Hipparcos parallax and new measurements of the stars bolometric flux to compute absolute luminosities, linear radii, and effective temperatures for the stars. We develop empirical relations for ~K0 to M4 main-sequence stars that link the stellar temperature, radius, and luminosity to the observed (B – V), (V – R), (V – I), (V – J), (V – H), and (V – K) broadband color index and stellar metallicity [Fe/H]. These relations are valid for metallicities ranging from [Fe/H] = –0.5 to +0.1 dex and are accurate to ~2%, ~5%, and ~4% for temperature, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity-dependent transformations in order to properly convert colors into stellar temperatures, radii, and luminosities. Alternatively, we find no sensitivity to metallicity on relations we construct to the global properties of a star omitting color information, e.g., temperature-radius and temperature-luminosity. Thus, we are able to empirically quantify to what order the stars observed color index is impacted by the stellar iron abundance. In addition to the empirical relations, we also provide a representative look-up table via stellar spectral classifications using this collection of data. Robust examinations of single star temperatures and radii compared to evolutionary model predictions on the luminosity-temperature and luminosity-radius planes reveal that models overestimate the temperatures of stars with surface temperatures <5000 K by ~3%, and underestimate the radii of stars with radii <0.7 R_☉ by ~5%. These conclusions additionally suggest that the models over account for the effects that the stellar metallicity may have on the astrophysical properties of an object. By comparing the interferometrically measured radii for the single star population to those of eclipsing binaries, we find that for a given mass, single and binary star radii are indistinguishable. However, we also find that for a given radius, the literature temperatures for binary stars are systematically lower compared to our interferometrically derived temperatures of single stars by ~200 to 300 K. The nature of this offset is dependent on the validation of binary star temperatures, where bringing all measurements to a uniform and correctly calibrated temperature scale is needed to identify any influence stellar activity may have on the physical properties of a star. Lastly, we present an empirically determined H-R diagram using fundamental properties presented here in combination with those in Boyajian et al. for a total of 74 nearby, main-sequence, A- to M-type stars, and define regions of habitability for the potential existence of sub-stellar mass companions in each system.


The Astrophysical Journal | 2012

Fundamental Properties of Stars Using Asteroseismology from Kepler and CoRoT and Interferometry from the CHARA Array

D. Huber; Michael J. Ireland; Timothy R. Bedding; I. M. Brandão; L. Piau; V. Maestro; T. R. White; H. Bruntt; Luca Casagrande; J. Molenda-Żakowicz; V. Silva Aguirre; S. G. Sousa; Christopher J. Burke; W. J. Chaplin; J. Christensen-Dalsgaard; M. S. Cunha; J. De Ridder; C. Farrington; A. Frasca; R. A. García; R. L. Gilliland; P. J. Goldfinger; S. Hekker; S. D. Kawaler; Hans Kjeldsen; H. McAlister; T. S. Metcalfe; A. Miglio; M. J. P. F. G. Monteiro; Marc H. Pinsonneault

We present results of a long-baseline interferometry campaign using the PAVO beam combiner at the CHARA Array to measure the angular sizes of five main-sequence stars, one subgiant and four red giant stars for which solar-like oscillations have been detected by either Kepler or CoRoT. By combining interferometric angular diameters, Hipparcos parallaxes, asteroseismic densities, bolometric fluxes, and high-resolution spectroscopy, we derive a full set of near-model-independent fundamental properties for the sample. We first use these properties to test asteroseismic scaling relations for the frequency of maximum power (?max) and the large frequency separation (??). We find excellent agreement within the observational uncertainties, and empirically show that simple estimates of asteroseismic radii for main-sequence stars are accurate to 4%. We furthermore find good agreement of our measured effective temperatures with spectroscopic and photometric estimates with mean deviations for stars between T eff = 4600-6200 K of ?22 ? 32 K (with a scatter of 97?K) and ?58 ? 31 K (with a scatter of 93?K), respectively. Finally, we present a first comparison with evolutionary models, and find differences between observed and theoretical properties for the metal-rich main-sequence star HD?173701. We conclude that the constraints presented in this study will have strong potential for testing stellar model physics, in particular when combined with detailed modeling of individual oscillation frequencies.


The Astrophysical Journal | 2013

Stellar Diameters and Temperatures. III. Main-sequence A, F, G, and K Stars: Additional High-precision Measurements and Empirical Relations

Tabetha S. Boyajian; Kaspar von Braun; Gerard T. van Belle; C. Farrington; Gail H. Schaefer; Jeremy Jones; Russel J. White; Harold A. McAlister; Theo A. ten Brummelaar; Stephen T. Ridgway; Douglas R. Gies; Laszlo Sturmann; J. Sturmann; Nils H. Turner; P. J. Goldfinger; Norm Vargas

Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR_(J)I_(J)JHK), Cousins (R_(C)I_(C)), Kron (R_(K)I_(K)), Sloan (griz), and WISE (W_(3)W_(4)) photometric systems. These relations have an average standard deviation of ~3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T_eff > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only ~2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis.


The Astrophysical Journal | 2012

STELLAR DIAMETERS AND TEMPERATURES. I. MAIN-SEQUENCE A, F, AND G STARS

Tabetha S. Boyajian; Harold A. McAlister; Gerard T. van Belle; Douglas R. Gies; Theo A. ten Brummelaar; Kaspar von Braun; C. Farrington; P. J. Goldfinger; David Patrick O'Brien; J. Robert Parks; N. D. Richardson; Stephen T. Ridgway; Gail H. Schaefer; Laszlo Sturmann; J. Sturmann; Y. Touhami; Nils H. Turner; Russel J. White

We have executed a survey of nearby, main-sequence A-, F-, and G-type stars with the CHARA Array, successfully measuring the angular diameters of forty-four stars with an average precision of ~1.5%. We present new measures of the bolometric flux, which in turn leads to an empirical determination of the effective temperature for the stars observed. In addition, these CHARA-determined temperatures, radii, and luminosities are fit to Yonsei-Yale model isochrones to constrain the masses and ages of the stars. These results are compared to indirect estimates of these quantities obtained by collecting photometry of the stars and applying them to model atmospheres and evolutionary isochrones. We find that for most cases, the models overestimate the effective temperature by ~1.5%-4% when compared to our directly measured values. The overestimated temperatures and underestimated radii in these works appear to cause an additional offset in the stars surface gravity measurements, which consequently yield higher masses and younger ages, in particular for stars with masses greater than ~1.3 M_☉. Additionally, we compare our measurements to a large sample of eclipsing binary stars, and excellent agreement is seen within both data sets. Finally, we present temperature relations with respect to (B – V) and (V – K) colors as well as spectral type, showing that calibration of effective temperatures with errors ~1% is now possible from interferometric angular diameters of stars.


The Astrophysical Journal | 2011

55 CANCRI: STELLAR ASTROPHYSICAL PARAMETERS, A PLANET IN THE HABITABLE ZONE, AND IMPLICATIONS FOR THE RADIUS OF A TRANSITING SUPER-EARTH

Kaspar von Braun; S. Boyajian Tabetha; Theo A. ten Brummelaar; Stephen R. Kane; Gerard T. van Belle; David R. Ciardi; Sean N. Raymond; Mercedes Lopez-Morales; Harold A. McAlister; Gail H. Schaefer; Stephen T. Ridgway; Laszlo Sturmann; J. Sturmann; Russel J. White; Nils H. Turner; C. Farrington; P. J. Goldfinger

The bright star 55 Cancri is known to host five planets, including a transiting super-Earth. The study presented here yields directly determined values for 55 Cncs stellar astrophysical parameters based on improved interferometry: R = 0.943 ± 0.010 R_☉, T EFF = 5196 ± 24 K. We use isochrone fitting to determine 55 Cncs age to be 10.2 ± 2.5 Gyr, implying a stellar mass of 0.905 ± 0.015 M_☉. Our analysis of the location and extent of the systems habitable zone (HZ; 0.67-1.32 AU) shows that planet f, with period ~260 days and M sin i = 0.155 M_(Jupiter), spends the majority of the duration of its elliptical orbit in the circumstellar HZ. Though planet f is too massive to harbor liquid water on any planetary surface, we elaborate on the potential of alternative low-mass objects in planet fs vicinity: a large moon and a low-mass planet on a dynamically stable orbit within the HZ. Finally, our direct value for 55 Cancris stellar radius allows for a model-independent calculation of the physical diameter of the transiting super-Earth 55 Cnc e (~2.05 ± 0.15 R_⊕), which, depending on the planetary mass assumed, implies a bulk density of 0.76 ρ_⊕ or 1.07 ρ_⊕.


Science | 2011

HD 181068: A Red Giant in a Triply Eclipsing Compact Hierarchical Triple System

A. Derekas; L. L. Kiss; T. Borkovits; D. Huber; H. Lehmann; J. Southworth; Timothy R. Bedding; D. Balam; M. Hartmann; M. Hrudkova; Michael J. Ireland; J. Kovács; Gy. Mező; A. Moór; E. Niemczura; Gordon E. Sarty; Gy. Szabó; R. Szabó; J. H. Telting; A. Tkachenko; K. Uytterhoeven; J. M. Benkő; Steve Bryson; V. Maestro; A. E. Simon; D. Stello; Gail H. Schaefer; Conny Aerts; Theo A. ten Brummelaar; P. De Cat

The Kepler satellite reveals details of the oscillations patterns of an evolved star in an exotic triple-star system. Hierarchical triple systems comprise a close binary and a more distant component. They are important for testing theories of star formation and of stellar evolution in the presence of nearby companions. We obtained 218 days of Kepler photometry of HD 181068 (magnitude of 7.1), supplemented by ground-based spectroscopy and interferometry, which show it to be a hierarchical triple with two types of mutual eclipses. The primary is a red giant that is in a 45-day orbit with a pair of red dwarfs in a close 0.9-day orbit. The red giant shows evidence for tidally induced oscillations that are driven by the orbital motion of the close pair. HD 181068 is an ideal target for studies of dynamical evolution and testing tidal friction theories in hierarchical triple systems.


Monthly Notices of the Royal Astronomical Society | 2013

Interferometric radii of bright Kepler stars with the CHARA Array : θ Cygni and 16 Cygni A and B

T. R. White; D. Huber; V. Maestro; Timothy R. Bedding; Michael J. Ireland; Fabien Baron; Tabetha S. Boyajian; Xiao Che; John D. Monnier; Benjamin Pope; Rachael M. Roettenbacher; D. Stello; Peter G. Tuthill; C. Farrington; P. J. Goldfinger; Harold A. McAlister; Gail H. Schaefer; J. Sturmann; L. Sturmann; Theo A. ten Brummelaar; Nils H. Turner

We present the results of long-baseline optical interferom etry observations using the Precision Astronomical Visual Observations (PAVO) beam combiner at the Center for High Angular Resolution Astronomy (CHARA) Array to measure the angular sizes of three bright Kepler stars: θ Cygni, and both components of the binary system 16 Cygni. Supporting infrared observations were made with the Michigan Infrared Combiner (MIRC) and Classic beam combiner, also at the CHARA Array. We find limb-darkened angular diameters of 0.753 ± 0.009 mas for θ Cyg, 0.539 ± 0.007 mas for 16 Cyg A and 0.490 ± 0.006 mas for 16 Cyg B. The Kepler Mission has observed these stars with outstanding photometric precision, revealing the presence of solar-like oscillations. Due to the brightness of these stars the oscillations have exceptiona l signal-to-noise, allowing for detailed study through asteroseismology, and are well constrained by other observations. We have combined our interferometric diameters with Hipparcos parallaxes, spectrophotometric bolometric fluxes and the asteroseismic large frequency sep aration to measure linear radii (θ Cyg: 1.48±0.02 R⊙, 16 Cyg A: 1.22±0.02 R⊙, 16 Cyg B: 1.12±0.02 R⊙), effective temperatures (θ Cyg: 6749±44 K, 16 Cyg A: 5839±42 K, 16 Cyg B: 5809±39 K), and masses (θ Cyg: 1.37±0.04 M⊙, 16 Cyg A: 1.07±0.05 M⊙, 16 Cyg B: 1.05±0.04 M⊙) for each star with very little model dependence. The measurements presented here will provide strong constraints for future stellar modelling efforts.


The Astrophysical Journal | 2011

ASTROPHYSICAL PARAMETERS AND HABITABLE ZONE OF THE EXOPLANET HOSTING STAR GJ 581

Kaspar von Braun; Tabetha S. Boyajian; Stephen R. Kane; Gerard T. van Belle; David R. Ciardi; Mercedes Lopez-Morales; Harold A. McAlister; Todd J. Henry; Wei-Chun Jao; Adric R. Riedel; John P. Subasavage; Gail H. Schaefer; Theo A. ten Brummelaar; Stephen T. Ridgway; Laszlo Sturmann; J. Sturmann; Jude Mazingue; Nils H. Turner; C. Farrington; P. J. Goldfinger; Andrew F. Boden

GJ 581 is an M dwarf host of a multiplanet system. We use long-baseline interferometric measurements from the CHARA Array, coupled with trigonometric parallax information, to directly determine its physical radius to be 0.299 ± 0.010 R_☉. Literature photometry data are used to perform spectral energy distribution fitting in order to determine GJ 581s effective surface temperature T_(EFF) = 3498 ± 56 K and its luminosity L = 0.01205 ± 0.00024 L_☉. From these measurements, we recompute the location and extent of the systems habitable zone and conclude that two of the planets orbiting GJ 581, planets d and g, spend all or part of their orbit within or just on the edge of the habitable zone.


The Astrophysical Journal | 2012

The GJ 436 System: Directly Determined Astrophysical Parameters of an M Dwarf and Implications for the Transiting Hot Neptune

Kaspar von Braun; Tabetha S. Boyajian; Stephen R. Kane; L. Hebb; Gerard T. van Belle; C. Farrington; David R. Ciardi; Heather A. Knutson; Theo A. ten Brummelaar; Mercedes Lopez-Morales; Harold A. McAlister; Gail H. Schaefer; Stephen T. Ridgway; Andrew Collier Cameron; P. J. Goldfinger; Nils H. Turner; Laszlo Sturmann; J. Sturmann

The late-type dwarf GJ 436 is known to host a transiting Neptune-mass planet in a 2.6 day orbit. We present results of our interferometric measurements to directly determine the stellar diameter (R_* = 0.455 ± 0.018 R_☉) and effective temperature (T_(EFF) = 3416 ± 54 K). We combine our stellar parameters with literature time-series data, which allows us to calculate physical and orbital system parameters, including GJ 436s stellar mass (M_* = 0.507^(+0.071)_(– 0.062) M_☉), stellar density (ρ_* = 5.37^(+0.30)_(–0.27) ρ_☉), planetary radius (R_p = 0.369^(+0.015)_(–0.015)R _(Jupiter)), and planetary mass (M_p = 0.078^(+0.007)_(–0.008) M_(Jupiter)), implying a mean planetary density of ρ_p = 1.55^(+0.12)_(–0.10) ρ_(Jupiter). These values are generally in good agreement with previous literature estimates based on assumed stellar mass and photometric light curve fitting. Finally, we examine the expected phase curves of the hot Neptune GJ 436b, based on various assumptions concerning the efficiency of energy redistribution in the planetary atmosphere, and find that it could be constrained with Spitzer monitoring observations.


Monthly Notices of the Royal Astronomical Society | 2014

Stellar diameters and temperatures - V. 11. Newly characterized exoplanet host stars

Kaspar von Braun; Tabetha S. Boyajian; Gerard T. van Belle; Stephen R. Kane; Jeremy Jones; C. Farrington; Gail H. Schaefer; Norm Vargas; N. Scott; Theo A. ten Brummelaar; Miranda Kephart; Douglas R. Gies; David R. Ciardi; Mercedes Lopez-Morales; Cassidy Mazingue; Harold A. McAlister; Stephen T. Ridgway; P. J. Goldfinger; Nils H. Turner; Laszlo Sturmann

We use near-infrared interferometric data coupled with trigonometric parallax values and spectral energy distribution fitting to directly determine stellar radii, effective temperatures and luminosities for the exoplanet host stars 61 Vir, ρ CrB, GJ 176, GJ 614, GJ 649, GJ 876, HD 1461, HD 7924, HD 33564, HD 107383 and HD 210702. Three of these targets are M dwarfs. Statistical uncertainties in the stellar radii and effective temperatures range from 0.5 to 5 per cent and from 0.2 to 2 per cent, respectively. For eight of these targets, this work presents the first directly determined values of radius and temperature; for the other three, we provide updates to their properties. The stellar fundamental parameters are used to estimate stellar mass and calculate the location and extent of each system’s circumstellar habitable zone. Two of these systems have planets that spend at least parts of their respective orbits in the system habitable zone: two of GJ 876’s four planets and the planet that orbits HD 33564. We find that our value for GJ 876’s stellar radius is more than 20 per cent larger than previous estimates and frequently used values in the astronomical literature.

Collaboration


Dive into the Gail H. Schaefer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Farrington

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

J. Sturmann

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

Nils H. Turner

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge