Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas S. Chapin is active.

Publication


Featured researches published by Douglas S. Chapin.


Journal of Pharmacology and Experimental Therapeutics | 2008

Preclinical Characterization of Selective Phosphodiesterase 10A Inhibitors: A New Therapeutic Approach to the Treatment of Schizophrenia

Christopher J. Schmidt; Douglas S. Chapin; J. Cianfrogna; M. L. Corman; Mihály Hajós; John F. Harms; W. E. Hoffman; L. A. Lebel; S. A. McCarthy; Frederick R. Nelson; C. Proulx-LaFrance; Mark J. Majchrzak; A. D. Ramirez; K. Schmidt; Patricia A. Seymour; J. A. Siuciak; F. D. Tingley; R. D. Williams; Patrick Robert Verhoest; Frank S. Menniti

We have recently proposed the hypothesis that inhibition of the cyclic nucleotide phosphodiesterase (PDE) 10A may represent a new pharmacological approach to the treatment of schizophrenia (Curr Opin Invest Drug 8:54–59, 2007). PDE10A is highly expressed in the medium spiny neurons of the mammalian striatum (Brain Res 985:113–126, 2003; J Histochem Cytochem 54:1205–1213, 2006; Neuroscience 139:597–607, 2006), where the enzyme is hypothesized to regulate both cAMP and cGMP signaling cascades to impact early signal processing in the corticostriatothalamic circuit (Neuropharmacology 51:374–385, 2006; Neuropharmacology 51:386–396, 2006). Our current understanding of the physiological role of PDE10A and the therapeutic utility of PDE10A inhibitors derives in part from studies with papaverine, the only pharmacological tool for this target extensively profiled to date. However, this agent has significant limitations in this regard, namely, relatively poor potency and selectivity and a very short exposure half-life after systemic administration. In the present report, we describe the discovery of a new class of PDE10A inhibitors exemplified by TP-10 (2-{4-[-pyridin-4-yl-1-(2,2,2-trifluoro-ethyl)-1H-pyrazol-3-yl]-phenoxymethyl}-quinoline succinic acid), an agent with greatly improved potency, selectivity, and pharmaceutical properties. These new pharmacological tools enabled studies that provide further evidence that inhibition of PDE10A represents an important new target for the treatment of schizophrenia and related disorders of basal ganglia function.


Neuropharmacology | 2006

Inhibition of the striatum-enriched phosphodiesterase PDE10A: a novel approach to the treatment of psychosis.

Judith A. Siuciak; Douglas S. Chapin; John F. Harms; Lorraine A. Lebel; Sheryl A. McCarthy; Leslie K. Chambers; Alka Shrikhande; Stephen Wong; Frank S. Menniti; Christopher J. Schmidt

Phosphodiesterase 10A (PDE10A) is a recently identified cyclic nucleotide phosphodiesterase expressed primarily in dopaminoreceptive medium spiny neurons of the striatum. We report that papaverine is a potent, specific inhibitor of PDE10A and use this compound to explore the role of PDE10A in regulating striatal function. Papaverine administration produces an increase in striatal tissue levels of cGMP and an increase in extracellular cAMP measured by microdialysis. These cyclic nucleotide changes are accompanied by increases in the phosphorylation of CREB and ERK, downstream markers of neuronal activation. In rats, papaverine potentiates haloperidol-induced catalepsy, consistent with the hypothesis that inhibition of PDE10A can increase striatal output and prompting a further evaluation of papaverine in models predictive of antipsychotic activity. Papaverine is found to inhibit conditioned avoidance responding in rats and mice and to inhibit PCP- and amphetamine-stimulated locomotor activity in rats. The effects of papaverine on striatal cGMP and CREB and ERK phosphorylation, as well as on conditioned avoidance responding, were absent in PDE10A knockout mice, indicating that the effects of the compound are the result of PDE10A inhibition. These results indicate that PDE10A regulates the activation of striatal medium spiny neurons through effects on cAMP- and cGMP-dependent signaling cascades. Furthermore, the present results demonstrate that papaverine has efficacy in behavioral models predictive of antipsychotic activity. Thus, inhibition of PDE10A may represent a novel approach to the treatment of psychosis.


Neuropharmacology | 2006

Genetic deletion of the striatum-enriched phosphodiesterase PDE10A : Evidence for altered striatal function

Judith A. Siuciak; Sheryl A. McCarthy; Douglas S. Chapin; Remie A. Fujiwara; Larry C. James; Robert Williams; Jeffrey L. Stock; John D. McNeish; Christine A. Strick; Frank S. Menniti; Christopher J. Schmidt

PDE10A is a newly identified phosphodiesterase that is highly expressed by the medium spiny projection neurons of the striatum. In order to investigate the physiological role of PDE10A in the central nervous system, PDE10A knockout mice (PDE10A(-/-)) were characterized both behaviorally and neurochemically. PDE10A(-/-) mice showed decreased exploratory activity and a significant delay in the acquisition of conditioned avoidance behavior when compared to wild-type (PDE10A(+/+)) mice. However, in a variety of other well-characterized behavioral tasks, including the elevated plus maze (anxiety), forced swim test (depression), hot plate (nociception) and two memory models (passive avoidance and Morris water maze), PDE10A(-/-) mice performed similarly to wild-type mice. When challenged with PCP or MK-801, PDE10A(-/-) mice showed a blunted locomotor response in comparison to PDE10A(+/+) mice. In contrast, PDE10A(-/-) and PDE10A(+/+) mice responded similarly to the locomotor stimulating effects of amphetamine and methamphetamine. Our findings suggest that PDE10A is involved in regulating striatal output, possibly by reducing the sensitivity of medium spiny neurons to glutamatergic excitation. These results are discussed in relationship to the hypothesis that PDE10A inhibition presents a novel treatment for psychosis.


Neuropharmacology | 2007

CP-809,101, a selective 5-HT2C agonist, shows activity in animal models of antipsychotic activity

Judith A. Siuciak; Douglas S. Chapin; Sheryl A. McCarthy; Victor Guanowsky; Janice A. Brown; Phoebe Chiang; Ravi B. Marala; Terrell A. Patterson; Patricia A. Seymour; Andrew G. Swick; Philip A. Iredale

CP-809,101 is a potent, functionally selective 5-HT(2C) agonist that displays approximately 100% efficacy in vitro. The aim of the present studies was to assess the efficacy of a selective 5-HT(2C) agonist in animal models predictive of antipsychotic-like efficacy and side-effect liability. Similar to currently available antipsychotic drugs, CP-809,101 dose-dependently inhibited conditioned avoidance responding (CAR, ED(50)=4.8 mg/kg, sc). The efficacy of CP-809,101 in CAR was completely antagonized by the concurrent administration of the 5-HT(2C) receptor antagonist, SB-224,282. CP-809,101 antagonized both PCP- and d-amphetamine-induced hyperactivity with ED(50) values of 2.4 and 2.9 mg/kg (sc), respectively and also reversed an apomorphine induced-deficit in prepulse inhibition. At doses up to 56 mg/kg, CP-809,101 did not produce catalepsy. Thus, the present results demonstrate that the 5-HT(2C) agonist, CP-809,101, has a pharmacological profile similar to that of the atypical antipsychotics with low extrapyramidal symptom liability. CP-809,101 was inactive in two animal models of antidepressant-like activity, the forced swim test and learned helplessness. However, CP-809,101 was active in novel object recognition, an animal model of cognitive function. These data suggest that 5-HT(2C) agonists may be a novel approach in the treatment of psychosis as well as for the improvement of cognitive dysfunction associated with schizophrenia.


The Journal of Neuroscience | 2014

Reduction of Brain Kynurenic Acid Improves Cognitive Function

Rouba Kozak; Brian M. Campbell; Christine A. Strick; Weldon Horner; William E. Hoffmann; Tamás Kiss; Douglas S. Chapin; Dina McGinnis; Amanda L. Abbott; Brooke M. Roberts; Kari R. Fonseca; Victor Guanowsky; Damon Young; Patricia A. Seymour; Amy B. Dounay; Mihály Hajós; Graham V. Williams; Stacy A. Castner

The elevation of kynurenic acid (KYNA) observed in schizophrenic patients may contribute to core symptoms arising from glutamate hypofunction, including cognitive impairments. Although increased KYNA levels reduce excitatory neurotransmission, KYNA has been proposed to act as an endogenous antagonist at the glycine site of the glutamate NMDA receptor (NMDAR) and as a negative allosteric modulator at the α7 nicotinic acetylcholine receptor. Levels of KYNA are elevated in CSF and the postmortem brain of schizophrenia patients, and these elevated levels of KYNA could contribute to NMDAR hypofunction and the cognitive deficits and negative symptoms associated with this disease. However, the impact of endogenously produced KYNA on brain function and behavior is less well understood due to a paucity of pharmacological tools. To address this issue, we identified PF-04859989, a brain-penetrable inhibitor of kynurenine aminotransferase II (KAT II), the enzyme responsible for most brain KYNA synthesis. In rats, systemic administration of PF-04859989 dose-dependently reduced brain KYNA to as little as 28% of basal levels, and prevented amphetamine- and ketamine-induced disruption of auditory gating and improved performance in a sustained attention task. It also prevented ketamine-induced disruption of performance in a working memory task and a spatial memory task in rodents and nonhuman primates, respectively. Together, these findings support the hypotheses that endogenous KYNA impacts cognitive function and that inhibition of KAT II, and consequent lowering of endogenous brain KYNA levels, improves cognitive performance under conditions considered relevant for schizophrenia.


Journal of Pharmacology and Experimental Therapeutics | 2012

Phosphodiesterase 9A regulates central cGMP and modulates responses to cholinergic and monoaminergic perturbation in vivo.

Robin J. Kleiman; Douglas S. Chapin; Curt Christoffersen; Jody Freeman; Kari R. Fonseca; Kieran F. Geoghegan; Sarah Grimwood; Victor Guanowsky; Mihály Hajós; John F. Harms; Christopher John Helal; William E. Hoffmann; Geralyn P. Kocan; Mark J. Majchrzak; Dina McGinnis; Stafford McLean; Frank S. Menniti; Fredrick R. Nelson; Robin Roof; Anne W. Schmidt; Patricia A. Seymour; Diane Stephenson; Francis David Tingley; Michelle Vanase-Frawley; Patrick Robert Verhoest; Christopher J. Schmidt

Cyclic nucleotides are critical regulators of synaptic plasticity and participate in requisite signaling cascades implicated across multiple neurotransmitter systems. Phosphodiesterase 9A (PDE9A) is a high-affinity, cGMP-specific enzyme widely expressed in the rodent central nervous system. In the current study, we observed neuronal staining with antibodies raised against PDE9A protein in human cortex, cerebellum, and subiculum. We have also developed several potent, selective, and brain-penetrant PDE9A inhibitors and used them to probe the function of PDE9A in vivo. Administration of these compounds to animals led to dose-dependent accumulation of cGMP in brain tissue and cerebrospinal fluid, producing a range of biological effects that implied functional significance for PDE9A-regulated cGMP in dopaminergic, cholinergic, and serotonergic neurotransmission and were consistent with the widespread distribution of PDE9A. In vivo effects of PDE9A inhibition included reversal of the respective disruptions of working memory by ketamine, episodic and spatial memory by scopolamine, and auditory gating by amphetamine, as well as potentiation of risperidone-induced improvements in sensorimotor gating and reversal of the stereotypic scratching response to the hallucinogenic 5-hydroxytryptamine 2A agonist mescaline. The results suggested a role for PDE9A in the regulation of monoaminergic circuitry associated with sensory processing and memory. Thus, PDE9A activity regulates neuronal cGMP signaling downstream of multiple neurotransmitter systems, and inhibition of PDE9A may provide therapeutic benefits in psychiatric and neurodegenerative diseases promoted by the dysfunction of these diverse neurotransmitter systems.


Neuropharmacology | 2008

Behavioral characterization of mice deficient in the phosphodiesterase-10A (PDE10A) enzyme on a C57/Bl6N congenic background

Judith A. Siuciak; Sheryl A. McCarthy; Douglas S. Chapin; Ashley N. Martin; John F. Harms; Christopher J. Schmidt

The phenotype of genetically modified animals is strongly influenced by both the genetic background of the animal as well as environmental factors. We have previously reported the behavioral and neurochemical characterization of PDE10A knockout mice maintained on a DBA1LacJ (PDE10A(DBA)) genetic background. The aim of the present studies was to assess the behavioral and neurochemical phenotype of PDE10A knockout mice on an alternative congenic C57BL/6N (PDE10A(C57)) genetic background. Consistent with our previous results, PDE10A(C57) knockout mice showed a decrease in exploratory locomotor activity and a delay in the acquisition of conditioned avoidance responding. Also consistent with previous studies, the elimination of PDE10A did not alter basal levels of striatal cGMP or cAMP or affect behavior in several other well-characterized behavioral assays. PDE10A(C57) knockout mice showed a blunted response to MK-801, although to a lesser degree than previously observed in the PDE10A(DBA) knockout mice, and no differences were observed following a PCP challenge. PDE10A(C57) knockout mice showed a significant change in striatal dopamine turnover, which was accompanied by an enhanced locomotor response to AMPH, These studies demonstrate that while many of the behavioral effects of the PDE10A gene deletion appear to be independent of genetic background, the impact of the deletion on behavior can vary in magnitude. Furthermore, the effects on the dopaminergic system appear to be background-dependent, with significant effects observed only in knockout mice on the C57BL6N genetic background.


Neuropharmacology | 2007

Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-1B (PDE1B) enzyme

Judith A. Siuciak; Sheryl A. McCarthy; Douglas S. Chapin; Tracy M. Reed; Charles V. Vorhees; D.R. Repaske

PDE1B is a calcium-dependent cyclic nucleotide phosphodiesterase that is highly expressed in the striatum. In order to investigate the physiological role of PDE1B in the central nervous system, PDE1B knockout mice (C57BL/6N background) were assessed in behavioral tests and their brains were assayed for monoamine content. In a variety of well-characterized behavioral tasks, including the elevated plus maze (anxiety-like behavior), forced swim test (depression-like behavior), hot plate (nociception) and two cognition models (passive avoidance and acquisition of conditioned avoidance responding), PDE1B knockout mice performed similarly to wild-type mice. PDE1B knockout mice showed increased baseline exploratory activity when compared to wild-type mice. When challenged with amphetamine (AMPH) and methamphetamine (METH), male and female PDE1B knockout mice showed an exaggerated locomotor response. Male PDE1B knockout mice also showed increased locomotor responses to higher doses of phencyclidine (PCP) and MK-801; however, this effect was not consistently observed in female knockout mice. In the striatum, increased dopamine turnover (DOPAC/DA and HVA/DA ratios) was found in both male and female PDE1B knockout mice. Striatal serotonin (5-HT) levels were also decreased in PDE1B knockout mice, although levels of the metabolite, 5HIAA, were unchanged. The present studies demonstrate increased striatal dopamine turnover in PDE1B knockout mice associated with increased baseline motor activity and an exaggerated locomotor response to dopaminergic stimulants such as methamphetamine and amphetamine. These data further support a role for PDE1B in striatal function.


Journal of Medicinal Chemistry | 2011

Use of structure-based design to discover a potent, selective, in vivo active phosphodiesterase 10A inhibitor lead series for the treatment of schizophrenia.

Christopher John Helal; Zhijun Kang; Xinjun Hou; Jayvardhan Pandit; Thomas A. Chappie; John M. Humphrey; Eric S. Marr; Kimberly F. Fennell; Lois K. Chenard; Carol B. Fox; Christopher J. Schmidt; Robert Williams; Douglas S. Chapin; Judith A. Siuciak; Lorraine A. Lebel; Frank S. Menniti; Julia Cianfrogna; Kari R. Fonseca; Frederick R. Nelson; Rebecca O'connor; Mary Macdougall; Laura McDowell; Spiros Liras

Utilizing structure-based virtual library design and scoring, a novel chimeric series of phosphodiesterase 10A (PDE10A) inhibitors was discovered by synergizing binding site interactions and ADME properties of two chemotypes. Virtual libraries were docked and scored for potential binding ability, followed by visual inspection to prioritize analogs for parallel and directed synthesis. The process yielded highly potent and selective compounds such as 16. New X-ray cocrystal structures enabled rational design of substituents that resulted in the successful optimization of physical properties to produce in vivo activity and to modulate microsomal clearance and permeability.


The American Journal of Clinical Nutrition | 1992

Sertraline, a serotonin-uptake inhibitor, reduces food intake and body weight in lean rats and genetically obese mice.

Jann A. Nielsen; Douglas S. Chapin; Jonathan Johnson; Leslie K Torgersen

Sertraline was found to inhibit weight gain and decrease food intake without affecting locomotion in rats and genetically obese (ob/ob) mice. Doses of 10, 17.8, and 32 mg/kg, administered intraperitoneally, (bid) significantly reduced the time rats spent in contact with their feeders and body weight in a dose-related manner. During a 5-d bid treatment regimen, vehicle-treated rats gained 37 +/- 3 g (mean +/- SEM), whereas animals treated with 32 mg sertraline/kg lost 34 +/- 4 g. The effects of sertraline on feeding and body weight in rats appeared to be specific because locomotor activity was not altered. In ob/ob mice, sertraline (44 mg/kg, ip, bid) lowered body weight relative to vehicle-treated controls for the duration of a 12-d study. There was no evidence for tolerance to the hypophagic and weight-loss effects of sertraline during either of the chronic dosing studies. These results suggest a potential role for sertraline in the treatment of human obesity.

Collaboration


Dive into the Douglas S. Chapin's collaboration.

Researchain Logo
Decentralizing Knowledge