Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank S. Menniti is active.

Publication


Featured researches published by Frank S. Menniti.


Pharmacological Reviews | 2010

Glutamate Receptor Ion Channels: Structure, Regulation, and Function

Stephen F. Traynelis; Lonnie P. Wollmuth; Chris J. McBain; Frank S. Menniti; Katie M. Vance; Kevin K. Ogden; Kasper B. Hansen; Hongjie Yuan; Scott J. Myers; Raymond Dingledine

The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.


Journal of Clinical Psychopharmacology | 2008

An Innovative Design to Establish Proof of Concept of the Antidepressant Effects of the NR2B Subunit Selective N-Methyl-D-Aspartate Antagonist, CP-101,606, in Patients With Treatment-Refractory Major Depressive Disorder

Sheldon H. Preskorn; Bryan Baker; Sheela Kolluri; Frank S. Menniti; Michael Krams; Jaren W. Landen

This randomized, placebo-controlled, double-blind study was the first to evaluate the antidepressant efficacy, safety, and tolerability of an NR2B subunit-selective N-methyl-D-aspartate receptor antagonist, CP-101,606. Subjects had major depression, according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria and a history of treatment refractoriness to least 1 adequate trial of a selective serotonin reuptake inhibitor. The study had 2 treatment periods. In period 1, subjects first received a 6-week open-label trial of paroxetine and a single-blind, intravenous placebo infusion. Period 1 nonresponders (n = 30) then received a randomized double-blind single infusion of CP-101,606 or placebo plus continued treatment with paroxetine for up to an additional 4 weeks (period 2). Depression severity was assessed using the Montgomery-Åsberg Depression Rating Scale and 17-item Hamilton Depression Rating Scale. On the prespecified main outcome measure (change from baseline in the Montgomery-Åsberg Depression Rating Scale total score at day 5 of period 2), CP-101,606 produced a greater decrease than did placebo (mean difference, 8.6; 80% confidence interval, −12.3 to −4.5) (P < 0.10). Hamilton Depression Rating Scale response rate was 60% for CP-101,606 versus 20% for placebo. Seventy-eight percent of CP-101,606-treated responders maintained response status for at least 1 week after the infusion. CP-101,606 was safe, generally well tolerated, and capable of producing an antidepressant response without also producing a dissociative reaction. Antagonism of the NR2B subtype of the N-methyl-D-aspartate receptor may be a fruitful target for the development of a new antidepressant with more robust effects and a faster onset compared with those currently available and capable of working when existing antidepressants do not.


Nature Reviews Drug Discovery | 2006

Phosphodiesterases in the CNS: targets for drug development

Frank S. Menniti; W. Stephen Faraci; Christopher J. Schmidt

The therapeutic and commercial success of phosphodiesterase 5 inhibitors such as Viagra, Levitra and Cialis has sparked renewed interest in the phosphodiesterases as drug discovery targets. Virtually all the phosphodiesterases are expressed in the CNS, making this gene family a particularly attractive source of new targets for the treatment of psychiatric and neurodegenerative disorders. Significantly, all neurons express multiple phosphodiesterases, which differ in cyclic nucleotide specificity, affinity, regulatory control and subcellular compartmentalization. Therefore, phosphodiesterase inhibition represents a mechanism through which it could be possible to precisely modulate neuronal activity. In this article, we review the current state of the art in the burgeoning field of phosphodiesterase pharmacology in the CNS.


Brain Research | 2003

Immunohistochemical localization of PDE10A in the rat brain

Thomas Francis Seeger; Brenda Bartlett; Timothy M. Coskran; Jeffrey S. Culp; Larry C. James; David L Krull; Jerry Lanfear; Anne M. Ryan; Christopher J. Schmidt; Christine A. Strick; Alison H. Varghese; Robert Williams; Patricia G Wylie; Frank S. Menniti

PDE10A is a newly identified cAMP/cGMP phosphodiesterase for which mRNA is highly expressed in the mammalian striatum. In the present study, PDE10A protein and mRNA expression throughout the rat brain were determined, using a monoclonal antibody (24F3.F11) for Western blot and immunohistochemical analyses and an antisense riboprobe for in situ hybridization. High levels of mRNA are observed in most of the neuronal cell bodies of striatal complex (caudate n, n. accumbens and olfactory tubercle), indicating that PDE10A is expressed by the striatal medium spiny neurons. PDE10A-like immunoreactivity is dense throughout the striatal neuropil, as well as in the internal capsule, globus pallidus, and substantia nigra. These latter regions lack significant expression of PDE10A mRNA. Thus, PDE10A is transported throughout the dendritic tree and down the axons to the terminals of the medium spiny neurons. These data suggest a role for PDE10A in regulating activity within both the striatonigral and striatopallidal pathways. In addition, PDE10A immunoreactivity and mRNA are found at lower levels in the hippocampal pyramidal cell layer, dentate granule cell layer and throughout the cortex and cerebellar granule cell layer. Immunoreactivity is detected only in cell bodies in these latter regions. This more restricted subcellular localization of PDE10A outside the striatum suggests a second, distinct function for the enzyme in these regions.


Journal of Pharmacology and Experimental Therapeutics | 2008

Preclinical Characterization of Selective Phosphodiesterase 10A Inhibitors: A New Therapeutic Approach to the Treatment of Schizophrenia

Christopher J. Schmidt; Douglas S. Chapin; J. Cianfrogna; M. L. Corman; Mihály Hajós; John F. Harms; W. E. Hoffman; L. A. Lebel; S. A. McCarthy; Frederick R. Nelson; C. Proulx-LaFrance; Mark J. Majchrzak; A. D. Ramirez; K. Schmidt; Patricia A. Seymour; J. A. Siuciak; F. D. Tingley; R. D. Williams; Patrick Robert Verhoest; Frank S. Menniti

We have recently proposed the hypothesis that inhibition of the cyclic nucleotide phosphodiesterase (PDE) 10A may represent a new pharmacological approach to the treatment of schizophrenia (Curr Opin Invest Drug 8:54–59, 2007). PDE10A is highly expressed in the medium spiny neurons of the mammalian striatum (Brain Res 985:113–126, 2003; J Histochem Cytochem 54:1205–1213, 2006; Neuroscience 139:597–607, 2006), where the enzyme is hypothesized to regulate both cAMP and cGMP signaling cascades to impact early signal processing in the corticostriatothalamic circuit (Neuropharmacology 51:374–385, 2006; Neuropharmacology 51:386–396, 2006). Our current understanding of the physiological role of PDE10A and the therapeutic utility of PDE10A inhibitors derives in part from studies with papaverine, the only pharmacological tool for this target extensively profiled to date. However, this agent has significant limitations in this regard, namely, relatively poor potency and selectivity and a very short exposure half-life after systemic administration. In the present report, we describe the discovery of a new class of PDE10A inhibitors exemplified by TP-10 (2-{4-[-pyridin-4-yl-1-(2,2,2-trifluoro-ethyl)-1H-pyrazol-3-yl]-phenoxymethyl}-quinoline succinic acid), an agent with greatly improved potency, selectivity, and pharmaceutical properties. These new pharmacological tools enabled studies that provide further evidence that inhibition of PDE10A represents an important new target for the treatment of schizophrenia and related disorders of basal ganglia function.


Neuropharmacology | 2006

Inhibition of the striatum-enriched phosphodiesterase PDE10A: a novel approach to the treatment of psychosis.

Judith A. Siuciak; Douglas S. Chapin; John F. Harms; Lorraine A. Lebel; Sheryl A. McCarthy; Leslie K. Chambers; Alka Shrikhande; Stephen Wong; Frank S. Menniti; Christopher J. Schmidt

Phosphodiesterase 10A (PDE10A) is a recently identified cyclic nucleotide phosphodiesterase expressed primarily in dopaminoreceptive medium spiny neurons of the striatum. We report that papaverine is a potent, specific inhibitor of PDE10A and use this compound to explore the role of PDE10A in regulating striatal function. Papaverine administration produces an increase in striatal tissue levels of cGMP and an increase in extracellular cAMP measured by microdialysis. These cyclic nucleotide changes are accompanied by increases in the phosphorylation of CREB and ERK, downstream markers of neuronal activation. In rats, papaverine potentiates haloperidol-induced catalepsy, consistent with the hypothesis that inhibition of PDE10A can increase striatal output and prompting a further evaluation of papaverine in models predictive of antipsychotic activity. Papaverine is found to inhibit conditioned avoidance responding in rats and mice and to inhibit PCP- and amphetamine-stimulated locomotor activity in rats. The effects of papaverine on striatal cGMP and CREB and ERK phosphorylation, as well as on conditioned avoidance responding, were absent in PDE10A knockout mice, indicating that the effects of the compound are the result of PDE10A inhibition. These results indicate that PDE10A regulates the activation of striatal medium spiny neurons through effects on cAMP- and cGMP-dependent signaling cascades. Furthermore, the present results demonstrate that papaverine has efficacy in behavioral models predictive of antipsychotic activity. Thus, inhibition of PDE10A may represent a novel approach to the treatment of psychosis.


Journal of Histochemistry and Cytochemistry | 2006

Immunohistochemical localization of phosphodiesterase 2A in multiple mammalian species.

Diane Stephenson; Tim M. Coskran; Margaret B. Wilhelms; Wendy O. Adamowicz; Michele M. O'Donnell; Kathleen B. Muravnick; Frank S. Menniti; Robin J. Kleiman; Daniel Morton

Phosphodiesterases (PDEs) comprise a family of enzymes that regulate the levels of cyclic nucleotides, key second messengers that mediate a diverse array of functions. PDE2A is an evolutionarily conserved cGMP-stimulated cAMP and cGMP PDE. In the present study, the regional and cellular distribution of PDE2A in tissues of rats, mice, cynomolgus monkeys, dogs, and humans was evaluated by immunohistochemistry. A polyclonal antibody directed to the C-terminal portion of PDE2A specifically detected PDE2A by Western blotting and by immunohistochemistry. The pattern of PDE2A immunoreactivity (ir) was consistent across all species. Western blot analysis demonstrated that PDE2A was most abundant in the brain relative to peripheral tissues. PDE2A ir was heterogeneously distributed within brain and was selectively expressed in particular peripheral tissues. In the brain, prominent immunoreactivity was apparent in components of the limbic system, including the isocortex, hippocampus, amygdala, habenula, basal ganglia, and interpeduncular nucleus. Cytoplasmic PDE2A staining was prominent in several peripheral tissues, including the adrenal zona glomerulosa, neurons of enteric ganglia, endothelial cells in all organs, lymphocytes of spleen and lymph nodes, and pituitary. These studies suggest that PDE2A is evolutionarily conserved across mammalian species and support the hypothesis that the enzyme plays a fundamental role in signal transduction.


Biology of Reproduction | 2009

Cyclic GMP Signaling Is Involved in the Luteinizing Hormone-Dependent Meiotic Maturation of Mouse Oocytes

Sergio Vaccari; James L. Weeks; Minnie Hsieh; Frank S. Menniti; Marco Conti

It is well established that cAMP signaling is an important regulator of the oocyte meiotic cell cycle. Conversely, the function of cGMP during oocyte maturation is less clear. Herein, we evaluated the expression of cGMP-hydrolyzing phosphodiesterases (PDEs) in the somatic and germ cell compartments of the mouse ovarian follicle and demonstrate that PDE5 is preferentially expressed in somatic cells. Cyclic GMP is a potent inhibitor of cAMP hydrolysis from oocyte extracts, with a 50% inhibitory concentration of 97 nM. Luteinizing hormone (LH) stimulation of cultured preovulatory follicles results in a marked decrease in cGMP content, and a nadir is reached in 1.5 h; similarly, oocyte cGMP levels decrease after gonadotropin stimulation in vivo. The LH-dependent decrease in cGMP requires activation of the epidermal growth factor network. Treatment of follicles with a PDE5 inhibitor increases cGMP in the follicle well above unstimulated levels. Although LH causes a decrease in cGMP in follicles preincubated with PDE5 inhibitors, the levels of this nucleotide remain above unstimulated levels. Under these conditions of elevated cGMP, LH stimulation does not cause oocyte maturation after 5 h of incubation. Microinjection of a cGMP-specific PDE into oocytes causes meiotic maturation of wild-type oocytes, suggesting that an intraoocyte pool of cGMP is involved in the maintenance of meiotic arrest. This effect is absent in PDE3A-deficient oocytes. Taken together, these findings provide evidence that cGMP and cAMP signaling cooperate in maintaining meiotic arrest via regulation of PDE3A and that a decrease in cGMP in the somatic compartment is one of the signals contributing to meiotic maturation.


Neuropharmacology | 2006

Genetic deletion of the striatum-enriched phosphodiesterase PDE10A : Evidence for altered striatal function

Judith A. Siuciak; Sheryl A. McCarthy; Douglas S. Chapin; Remie A. Fujiwara; Larry C. James; Robert Williams; Jeffrey L. Stock; John D. McNeish; Christine A. Strick; Frank S. Menniti; Christopher J. Schmidt

PDE10A is a newly identified phosphodiesterase that is highly expressed by the medium spiny projection neurons of the striatum. In order to investigate the physiological role of PDE10A in the central nervous system, PDE10A knockout mice (PDE10A(-/-)) were characterized both behaviorally and neurochemically. PDE10A(-/-) mice showed decreased exploratory activity and a significant delay in the acquisition of conditioned avoidance behavior when compared to wild-type (PDE10A(+/+)) mice. However, in a variety of other well-characterized behavioral tasks, including the elevated plus maze (anxiety), forced swim test (depression), hot plate (nociception) and two memory models (passive avoidance and Morris water maze), PDE10A(-/-) mice performed similarly to wild-type mice. When challenged with PCP or MK-801, PDE10A(-/-) mice showed a blunted locomotor response in comparison to PDE10A(+/+) mice. In contrast, PDE10A(-/-) and PDE10A(+/+) mice responded similarly to the locomotor stimulating effects of amphetamine and methamphetamine. Our findings suggest that PDE10A is involved in regulating striatal output, possibly by reducing the sensitivity of medium spiny neurons to glutamatergic excitation. These results are discussed in relationship to the hypothesis that PDE10A inhibition presents a novel treatment for psychosis.


Neuroscience | 2006

CELLULAR AND SUBCELLULAR LOCALIZATION OF PDE10A, A STRIATUM-ENRICHED PHOSPHODIESTERASE

Z. Xie; W.O. Adamowicz; W.D. Eldred; A.B. Jakowski; Robin J. Kleiman; Daniel Morton; Diane Stephenson; C.A. Strick; R.D. Williams; Frank S. Menniti

PDE10A is a recently identified phosphodiesterase that is highly expressed by the GABAergic medium spiny projection neurons of the mammalian striatum. Inhibition of PDE10A results in striatal activation and behavioral suppression, suggesting that PDE10A inhibitors represent a novel class of antipsychotic agents. In the present studies we further elucidate the localization of this enzyme in striatum of rat and cynomolgus monkey. We find by confocal microscopy that PDE10A-like immunoreactivity is excluded from each class of striatal interneuron. Thus, the enzyme is restricted to the medium spiny neurons. Subcellular fractionation indicates that PDE10A is primarily membrane bound. The protein is present in the synaptosomal fraction but is separated from the postsynaptic density upon solubilization with 0.4% Triton X-100. Immuno-electron microscopy of striatum confirms that PDE10A is most often associated with membranes in dendrites and spines. Immuno-gold particles are observed on the edge of the postsynaptic density but not within this structure. Our studies indicate that PDE10A is associated with post-synaptic membranes of the medium spiny neurons, suggesting that the specialized compartmentation of PDE10A enables the regulation of intracellular signaling from glutamatergic and dopaminergic inputs to these neurons.

Researchain Logo
Decentralizing Knowledge