Douglas S. Portman
University of Rochester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Douglas S. Portman.
The EMBO Journal | 1994
Douglas S. Portman; Gideon Dreyfuss
RNA‐RNA base pairing plays a critical role in the interactions between pre‐mRNAs and trans‐acting factors during the processing of pre‐mRNAs (hnRNAs) into mRNAs, and it is likely that specific factors are required to promote the annealing of RNAs. To identify particular nuclear components that have such activity, we fractionated HeLa nucleoplasm and assayed for activity which promoted the hybridization of a pre‐mRNA with an antisense RNA probe complementary to 60 nucleotides (nt) encompassing the 3′ splice site. At least nine major RNA annealing activities were identified and, surprisingly, eight of these copurified partially or to homogeneity with known hnRNP proteins. The activities of three of these proteins, hnRNP A1, C1 and U, were confirmed using purified recombinant proteins. Moreover, we found that the RNA binding domain alone of hnRNP C1/C2 had significant activity, indicating that this RNA annealing may result, at least partly, from chaperone activity: a direct modulation of RNA conformation by hnRNP proteins. The finding that hnRNP proteins have strong RNA annealing activity indicates that they can profoundly affect the interactions of pre‐mRNAs with trans‐acting factors and suggests this to be an important function of hnRNP proteins in the processing of pre‐mRNAs.
Development | 2008
D. Adam Mason; Jeremy S. Rabinowitz; Douglas S. Portman
Although sexual dimorphism is ubiquitous in animals, the means by which sex determination mechanisms trigger specific modifications to shared structures is not well understood. In C. elegans, tail tip morphology is highly dimorphic: whereas hermaphrodites have a whip-like, tapered tail tip, the male tail is blunt-ended and round. Here we show that the male-specific cell fusion and retraction that generate the adult tail are controlled by the previously undescribed doublesex-related DM gene dmd-3, with a secondary contribution from the paralogous gene mab-3. In dmd-3 mutants, cell fusion and retraction in the male tail tip are severely defective, while in mab-3; dmd-3 double mutants, these processes are completely absent. Conversely, expression of dmd-3 in the hermaphrodite tail tip is sufficient to trigger fusion and retraction. The master sexual regulator tra-1 normally represses dmd-3 expression in the hermaphrodite tail tip, accounting for the sexual specificity of tail tip morphogenesis. Temporal cues control the timing of tail remodeling in males by regulating dmd-3 expression, and Wnt signaling promotes this process by maintaining and enhancing dmd-3 expression in the tail tip. Downstream, dmd-3 and mab-3 regulate effectors of morphogenesis including the cell fusion gene eff-1. Together, our results reveal a regulatory network for male tail morphogenesis in which dmd-3 and mab-3 together occupy the central node. These findings indicate that an important conserved function of DM genes is to link the general sex determination hierarchy to specific effectors of differentiation and morphogenesis.
Current Biology | 2007
KyungHwa Lee; Douglas S. Portman
Though sex differences in animal behavior are ubiquitous, their neural and genetic underpinnings remain poorly understood. In particular, the role of functional differences in the neural circuitry that is shared by both sexes has not been extensively investigated. We have addressed these issues with C. elegans olfaction, a simple innate behavior mediated by sexually isomorphic neurons. Though males respond to the same olfactory attractants as do hermaphrodites, we find that each sex has a characteristic repertoire of olfactory preferences. These are not secondary to other sex-specific behaviors and do not require signaling from the gonad. Sex-specific olfactory preferences are controlled by tra-1, the master regulator of C. elegans sexual differentiation. Moreover, the genetic masculinization of neurons in an otherwise wild-type hermaphrodite is sufficient to switch the sexual phenotype of olfactory preference behavior. These studies reveal novel and unexpected sex differences in a C. elegans sensory behavior that is exhibited by both sexes. Our results indicate that these differences are a function of the chromosomally determined sexual identity of shared neural circuitry.
Molecular Biology Reports | 1993
Matthias Görlach; Christopher G. Burd; Douglas S. Portman; Gideon Dreyfuss
ConclusionsThe isolation of hnRNP complexes has identified many new proteins and their characterization has led to the identification of several motifs that are important for RNA binding. These motifs are present in a wide variety of proteins including splicing factors, ribosomal proteins, and several proteins of unknown function. These findings have blurred the lines of demarcation between proteins previously thought of as RNA “packaging” proteins and RNA processing factors. Recent findings on hnRNP proteins have suggested a plethora of possible functions along the pathway of mRNA metabolism. It can be expected that the next few years will see the unraveling of the detailed functions of hnRNP proteins.
Current Biology | 2014
Deborah A. Ryan; Renee M. Miller; KyungHwa Lee; Scott J. Neal; Kelli A. Fagan; Piali Sengupta; Douglas S. Portman
BACKGROUND Adaptive behavioral prioritization requires flexible outputs from fixed neural circuits. In C. elegans, the prioritization of feeding versus mate searching depends on biological sex (males will abandon food to search for mates, whereas hermaphrodites will not) as well as developmental stage and feeding status. Previously, we found that males are less attracted than hermaphrodites to the food-associated odorant diacetyl, suggesting that sensory modulation may contribute to behavioral prioritization. RESULTS We show that somatic sex acts cell autonomously to reconfigure the olfactory circuit by regulating a key chemoreceptor, odr-10, in the AWA neurons. Moreover, we find that odr-10 has a significant role in food detection, the regulation of which contributes to sex differences in behavioral prioritization. Overexpression of odr-10 increases male food attraction and decreases off-food exploration; conversely, loss of odr-10 impairs food taxis in both sexes. In larvae, both sexes prioritize feeding over exploration; correspondingly, the sexes have equal odr-10 expression and food attraction. Food deprivation, which transiently favors feeding over exploration in adult males, increases male food attraction by activating odr-10 expression. Furthermore, the weak expression of odr-10 in well-fed adult males has important adaptive value, allowing males to efficiently locate mates in a patchy food environment. CONCLUSIONS We find that modulated expression of a single chemoreceptor plays a key role in naturally occurring variation in the prioritization of feeding and exploration. The convergence of three independent regulatory inputs--somatic sex, age, and feeding status--on chemoreceptor expression highlights sensory function as a key source of plasticity in neural circuits.
Genetics | 2010
Daryl D. Hurd; Renee M. Miller; Lizbeth Núñez; Douglas S. Portman
Primary cilia have essential roles in transducing signals in eukaryotes. At their core is the ciliary axoneme, a microtubule-based structure that defines cilium morphology and provides a substrate for intraflagellar transport. However, the extent to which axonemal microtubules are specialized for sensory cilium function is unknown. In the nematode Caenorhabditis elegans, primary cilia are present at the dendritic ends of most sensory neurons, where they provide a specialized environment for the transduction of particular stimuli. Here, we find that three tubulin isotypes—the α-tubulins TBA-6 and TBA-9 and the β-tubulin TBB-4—are specifically expressed in overlapping sets of C. elegans sensory neurons and localize to the sensory cilia of these cells. Although cilia still form in mutants lacking tba-6, tba-9, and tbb-4, ciliary function is often compromised: these mutants exhibit a variety of sensory deficits as well as the mislocalization of signaling components. In at least one case, that of the CEM cephalic sensory neurons, cilium architecture is disrupted in mutants lacking specific ciliary tubulins. While there is likely to be some functional redundancy among C. elegans tubulin genes, our results indicate that specific tubulins optimize the functional properties of C. elegans sensory cilia.
The Journal of Neuroscience | 2014
William R. Mowrey; Jessica R. Bennett; Douglas S. Portman
Sex differences in shared behaviors (for example, locomotion and feeding) are a nearly universal feature of animal biology. Though these behaviors may share underlying neural programs, their kinematics can exhibit robust differences between males and females. The neural underpinnings of these differences are poorly understood because of the often-untested assumption that they are determined by sex-specific body morphology. Here, we address this issue in the nematode Caenorhabditis elegans, which features two sexes with distinct body morphologies but similar locomotor circuitry and body muscle. Quantitative behavioral analysis shows that C. elegans and related nematodes exhibit significant sex differences in the dynamics and geometry of locomotor body waves, such that the male is generally faster. Using a recently proposed model of locomotor wave propagation, we show that sex differences in both body mechanics and the intrinsic dynamics of the motor system can contribute to kinematic differences in distinct mechanical contexts. By genetically sex-reversing the properties of specific tissues and cells, however, we find that sex-specific locomotor frequency in C. elegans is determined primarily by the functional modification of shared sensory neurons. Further, we find that sexual modification of body wall muscle together with the nervous system is required to alter body wave speed. Thus, rather than relying on a single focus of modification, sex differences in motor dynamics require independent modifications to multiple tissue types. Our results suggest shared motor behaviors may be sex-specifically optimized though distributed modifications to several aspects of morphology and physiology.
PLOS ONE | 2011
Meagan S. Siehr; Pamela K. Koo; Amrita L. Sherlekar; Xuelin Bian; Meredith R. Bunkers; Renee M. Miller; Douglas S. Portman; Robyn Lints
Background In most animal species, males and females exhibit differences in behavior and morphology that relate to their respective roles in reproduction. DM (Doublesex/MAB-3) domain transcription factors are phylogenetically conserved regulators of sexual development. They are thought to establish sexual traits by sex-specifically modifying the activity of general developmental programs. However, there are few examples where the details of these interactions are known, particularly in the nervous system. Methodology/Principal Findings In this study, we show that two C. elegans DM domain genes, dmd-3 and mab-23, regulate sensory and muscle cell development in a male neural circuit required for mating. Using genetic approaches, we show that in the circuit sensory neurons, dmd-3 and mab-23 establish the correct pattern of dopaminergic (DA) and cholinergic (ACh) fate. We find that the ETS-domain transcription factor gene ast-1, a non-sex-specific, phylogenetically conserved activator of dopamine biosynthesis gene transcription, is broadly expressed in the circuit sensory neuron population. However, dmd-3 and mab-23 repress its activity in most cells, promoting ACh fate instead. A subset of neurons, preferentially exposed to a TGF-beta ligand, escape this repression because signal transduction pathway activity in these cells blocks dmd-3/mab-23 function, allowing DA fate to be established. Through optogenetic and pharmacological approaches, we show that the sensory and muscle cell characteristics controlled by dmd-3 and mab-23 are crucial for circuit function. Conclusions/Significance In the C. elegans male, DM domain genes dmd-3 and mab-23 regulate expression of cell sub-type characteristics that are critical for mating success. In particular, these factors limit the number of DA neurons in the male nervous system by sex-specifically regulating a phylogenetically conserved dopamine biosynthesis gene transcription factor. Homologous interactions between vertebrate counterparts could regulate sex differences in neuron sub-type populations in the brain.
Biology of Sex Differences | 2012
William R. Mowrey; Douglas S. Portman
Animals prioritize behaviors according to their physiological needs and reproductive goals, selecting a single behavioral strategy from a repertoire of possible responses to any given stimulus. Biological sex influences this decision-making process in significant ways, differentiating the responses animals choose when faced with stimuli ranging from food to conspecifics. We review here recent work in invertebrate models, including C. elegans, Drosophila, and a variety of insects, mollusks and crustaceans, that has begun to offer intriguing insights into the neural mechanisms underlying the sexual modulation of behavioral decision-making. These findings show that an animals sex can modulate neural function in surprisingly diverse ways, much like internal physiological variables such as hunger or thirst. In the context of homeostatic behaviors such as feeding, an animals sex and nutritional status may converge on a common physiological mechanism, the functional modulation of shared sensory circuitry, to influence decision-making. Similarly, considerable evidence suggests that decisions on whether to mate or fight with conspecifics are also mediated through sex-specific neuromodulatory control of nominally shared neural circuits. This work offers a new perspective on how sex differences in behavior emerge, in which the regulated function of shared neural circuitry plays a crucial role. Emerging evidence from vertebrates indicates that this paradigm is likely to extend to more complex nervous systems as well. As men and women differ in their susceptibility to a variety of neuropsychiatric disorders affecting shared behaviors, these findings may ultimately have important implications for human health.
The Journal of Neuroscience | 2011
Renee M. Miller; Douglas S. Portman
Each sensory ray of the Caenorhabditis elegans male tail comprises three distinct neuroglial cell types. These three cells descend from a single progenitor, the ray precursor cell, through several rounds of asymmetric division called the ray sublineage. Ray development requires the conserved atonal-family bHLH gene lin-32, which specifies the ray neuroblast and promotes the differentiation of its progeny. However, the mechanisms that allocate specific cell fates among these progeny are unknown. Here we show that the distribution of LIN-32 during the ray sublineage is markedly asymmetric, localizing to anterior daughter cells in two successive cell divisions. The anterior–posterior patterning of LIN-32 expression and of differentiated ray neuroglial fates is brought about by the Wnt/β-catenin asymmetry pathway, including the Wnt ligand LIN-44, its receptor LIN-17, and downstream components LIT-1 (NLK), SYS-1 (β-catenin), and POP-1 (TCF). LIN-32 asymmetry itself has an important role in patterning ray cell fates, because the failure to silence lin-32 expression in posterior cells disrupts development of this branch of the ray sublineage. Together, our results illustrate a mechanism whereby the regulated function of a proneural-class gene in a single neural lineage can both specify a neural precursor and actively pattern the fates of its progeny. Moreover, they reveal a central role for the Wnt/β-catenin asymmetry pathway in patterning neural and glial fates in a simple sensory lineage.