Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Rene Garcia is active.

Publication


Featured researches published by L. Rene Garcia.


Cell | 2001

Regulation of Distinct Muscle Behaviors Controls the C. elegans Male's Copulatory Spicules during Mating

L. Rene Garcia; Pinky Mehta; Paul W. Sternberg

We demonstrate through cell ablation, molecular genetic, and pharmacological approaches that during C. elegans male mating behavior, the male inserts his copulatory spicules into the hermaphrodite by regulating periodic and prolonged spicule muscle contractions. Distinct cholinergic neurons use different ACh receptors and calcium channels in the spicule muscles to mediate these contractile behaviors. The PCB and PCC sensory neurons facilitate periodic contraction through muscle-encoded UNC-68 ryanodine receptor calcium channels. The SPC motor neurons trigger prolonged contraction through EGL-19 L-type voltage-gated calcium channels. The male gonad then lengthens the duration of EGL-19-mediated prolonged muscle contraction. This regulation of muscle contraction provides a paradigm to explain how animals initiate, monitor, and maintain a behavioral motor program.


eLife | 2015

A cellular and regulatory map of the cholinergic nervous system of C. elegans

Laura Pereira; Paschalis Kratsios; Esther Serrano-Saiz; Hila Sheftel; Avi Mayo; David H. Hall; John G. White; Brigitte LeBoeuf; L. Rene Garcia; Uri Alon; Oliver Hobert

Nervous system maps are of critical importance for understanding how nervous systems develop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C. elegans nervous system. We find that acetylcholine (ACh) is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that ACh may also operate very broadly as an inhibitory neurotransmitter. As a first application of this comprehensive neurotransmitter map, we identify transcriptional regulatory mechanisms that control cholinergic neurotransmitter identity and cholinergic circuit assembly. DOI: http://dx.doi.org/10.7554/eLife.12432.001


Genetics | 2007

Diversity in Mating Behavior of Hermaphroditic and Male–Female Caenorhabditis Nematodes

L. Rene Garcia; Brigitte LeBoeuf; Pamela Koo

In this study, we addressed why Caenorhabditis elegans males are inefficient at fertilizing their hermaphrodites. During copulation, hermaphrodites generally move away from males before they become impregnated. C. elegans hermaphrodites reproduce by internal self-fertilization, so that copulation with males is not required for species propagation. The hermaphroditic mode of reproduction could potentially relax selection for genes that optimize male mating behavior. We examined males from hermaphroditic and gonochoristic (male–female copulation) Caenorhabditis species to determine if they use different sensory and motor mechanisms to control their mating behavior. Instead, we found through laser ablation analysis and behavioral observations that hermaphroditic C. briggsae and gonochoristic C. remanei and Caenorhabditis species 4, PB2801 males produce a factor that immobilizes females during copulation. This factor also stimulates the vulval slit to widen, so that the male copulatory spicules can easily insert. C. elegans and C. briggsae hermaphrodites are not affected by this factor. We suggest that sensory and motor execution of mating behavior have not significantly changed among males of different Caenorhabditis species; however, during the evolution of internal self-fertilization, hermaphrodites have lost the ability to respond to the male soporific-inducing factor.


The Journal of Neuroscience | 2007

Gαq-Coupled Muscarinic Acetylcholine Receptors Enhance Nicotinic Acetylcholine Receptor Signaling in Caenorhabditis elegans Mating Behavior

Yishi Liu; Brigitte LeBoeuf; L. Rene Garcia

In this study, we address why metabotropic and ionotropic cholinergic signaling pathways are used to facilitate motor behaviors. We demonstrate that a Gαq-coupled muscarinic acetylcholine receptor (mAChR) signaling pathway enhances nicotinic acetylcholine receptor (nAChR) signaling to facilitate the insertion of the Caenorhabditis elegans male copulatory spicules into the hermaphrodite during mating. Previous studies showed that ACh (acetylcholine) activates nAChRs on the spicule protractor muscles to induce the attached spicules to extend from the tail. Using the mAChR agonist Oxo M (oxotremorine M), we identified a GAR-3(mAChR)-Gαq pathway that promotes protractor muscle contraction by upregulating nAChR signaling before mating. GAR-3(mAChR) is expressed in the protractor muscles and in the spicule-associated SPC and PCB cholinergic neurons. However, ablation of these neurons or impairing cholinergic transmission reduces drug-induced spicule protraction, suggesting that drug-stimulated neurons directly activate muscle contraction. Behavioral analysis of gar-3 mutants indicates that, in wild-type males, GAR-3(mAChR) expression in the SPC and PCB neurons is required for the male to sustain rhythmic spicule muscle contractions during attempts to breach the vulva. We propose that the GAR-3(mAChR)/Gαq pathway sensitizes the spicule neurons and muscles before and during mating so that the male can respond to hermaphrodite vulva efficiently.


Molecular Neurobiology | 2007

Molecular signaling involved in regulating feeding and other mitivated behaviors

Todd Gruninger; Brigitte LeBoeuf; Yishi Liu; L. Rene Garcia

The metabolic and nutritional status of an organism influences multiple behaviors in addition to food intake. When an organism is hungry, it employs behaviors that help it locate and ingest food while suppressing behaviors that are not associated with this goal. Alternatively, when an organism is satiated, food-seeking behaviors are repressed so that the animal can direct itself to other goal-oriented tasks such as reproductive behaviors. Studies in both vertebrate and invertebrate model systems have revealed that food-deprived and -satiated behaviors are differentially executed and integrated via common molecular signaling mechanisms. This article discusses cellular and molecular mechanisms for how insulin, neuropeptide Y (NPY), and serotonin utilize common signaling pathways to integrate feeding and metabolic state with other motivated behaviors. Insulin, NPY, and serotonin are three of the most well-studied molecules implicated in regulating such behaviors. Overall, insulin signaling allows an organism to coordinate proper behavioral output with changes in metabolism, NPY activates behaviors required for locating and ingesting food, and serotonin modulates behaviors performed when an organism is satiated. These three molecules work to ensure that the proper behaviors are executed in response to the feeding state of an organism.


The Journal of Neuroscience | 2006

Integration of Male Mating and Feeding Behaviors in Caenorhabditis elegans

Todd Gruninger; Daisy G. Gualberto; Brigitte LeBoeuf; L. Rene Garcia

The Caenorhabditis elegans male must integrate various environmental cues to ensure proper execution of mating. One step of male mating, the insertion of the male copulatory spicules into its mate, requires UNC-103 ERG (ether-a-go-go-related gene)-like K+ channels. unc-103(lf) alleles cause males to protract their spicules spontaneously in the absence of mating cues. To identify proteins that work with UNC-103, we suppressed unc-103(lf) and isolated lev-11(rg1). LEV-11 (tropomyosin) regulates the spicules directly by controlling the male sex muscles and indirectly by controlling the pharyngeal muscles. lev-11-mediated suppression requires the pharyngeal NSM neurosecretory motor neurons; ablating these neurons in lev-11(rg1); unc-103(lf) males restores spontaneous spicule protraction. Additionally, unc-103-induced spicule protraction can be suppressed by reducing a pharyngeal-specific troponin T. These observations demonstrate that non-genitalia cells involved in feeding also mediate male sexual behaviors.


Development | 2003

Modulation of EGF receptor-mediated vulva development by the heterotrimeric G-protein Gαq and excitable cells in C. elegans

Nadeem Moghal; L. Rene Garcia; Liakot A. Khan; Kouichi Iwasaki; Paul W. Sternberg

The extent to which excitable cells and behavior modulate animal development has not been examined in detail. Here, we demonstrate the existence of a novel pathway for promoting vulval fates in C. elegans that involves activation of the heterotrimeric Gαq protein, EGL-30. EGL-30 acts with muscle-expressed EGL-19 L-type voltage-gated calcium channels to promote vulva development, and acts downstream or parallel to LET-60 (RAS). This pathway is not essential for vulval induction on standard Petri plates, but can be stimulated by expression of activated EGL-30 in neurons, or by an EGL-30-dependent change in behavior that occurs in a liquid environment. Our results indicate that excitable cells and animal behavior can provide modulatory inputs into the effects of growth factor signaling on cell fates, and suggest that communication between these cell populations is important for normal development to occur under certain environmental conditions.


PLOS Genetics | 2011

A Cholinergic-Regulated Circuit Coordinates the Maintenance and Bi-Stable States of a Sensory-Motor Behavior during Caenorhabditis elegans Male Copulation

Yishi Liu; Brigitte LeBeouf; Xiaoyan Guo; Paola Correa; Daisy G. Gualberto; Robyn Lints; L. Rene Garcia

Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodites vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicules position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K(+) channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.


PLOS Genetics | 2005

Food Deprivation Attenuates Seizures through CaMKII and EAG K+ Channels

Brigitte LeBoeuf; Todd Gruninger; L. Rene Garcia

Accumulated research has demonstrated the beneficial effects of dietary restriction on extending lifespan and increasing cellular stress resistance. However, reducing nutrient intake has also been shown to direct animal behaviors toward food acquisition. Under food-limiting conditions, behavioral changes suggest that neuronal and muscle activities in circuits that are not involved in nutrient acquisition are down-regulated. These dietary-regulated mechanisms, if understood better, might provide an approach to compensate for defects in molecules that regulate cell excitability. We previously reported that a neuromuscular circuit used in Caenorhabditis elegans male mating behavior is attenuated under food-limiting conditions. During periods between matings, sex-specific muscles that control movements of the males copulatory spicules are kept inactive by UNC-103 ether-a-go-go–related gene (ERG)–like K+ channels. Deletion of unc-103 causes ∼30%–40% of virgin males to display sex-muscle seizures; however, when food is deprived from males, the incidence of spontaneous muscle contractions drops to 9%–11%. In this work, we used genetics and pharmacology to address the mechanisms that act parallel with UNC-103 to suppress muscle seizures in males that lack ERG-like K+ channel function. We identify calcium/calmodulin-dependent protein kinase II as a regulator that uses different mechanisms in food and nonfood conditions to compensate for reduced ERG-like K+ channel activity. We found that in food-deprived conditions, calcium/calmodulin-dependent protein kinase II acts cell-autonomously with ether-a-go-go K+ channels to inhibit spontaneous muscle contractions. Our work suggests that upregulating mechanisms used by food deprivation can suppress muscle seizures.


PLOS Genetics | 2008

Sensory Perception of Food and Insulin-Like Signals Influence Seizure Susceptibility

Todd Gruninger; Daisy G. Gualberto; L. Rene Garcia

Food deprivation is known to affect physiology and behavior. Changes that occur could be the result of the organisms monitoring of internal and external nutrient availability. In C. elegans, male mating is dependent on food availability; food-deprived males mate with lower efficiency compared to their well-fed counterparts, suggesting that the mating circuit is repressed in low-food environments. This behavioral response could be mediated by sensory neurons exposed to the environment or by internal metabolic cues. We demonstrated that food-deprivation negatively regulates sex-muscle excitability through the activity of chemosensory neurons and insulin-like signaling. Specifically, we found that the repressive effects of food deprivation on the mating circuit can be partially blocked by placing males on inedible food, E. coli that can be sensed but not eaten. We determined that the olfactory AWC neurons actively suppress sex-muscle excitability in response to food deprivation. In addition, we demonstrated that loss of insulin-like receptor (DAF-2) signaling in the sex muscles blocks the ability of food deprivation to suppress the mating circuit. During low-food conditions, we propose that increased activity by specific olfactory neurons (AWCs) leads to the release of neuroendocrine signals, including insulin-like ligands. Insulin-like receptor signaling in the sex muscles then reduces cell excitability via activation of downstream molecules, including PLC-γ and CaMKII.

Collaboration


Dive into the L. Rene Garcia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul W. Sternberg

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Changhoon Jee

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge