Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dragana Stanley is active.

Publication


Featured researches published by Dragana Stanley.


Nature Communications | 2015

Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites

Alison N. Thorburn; Craig McKenzie; Sj Shen; Dragana Stanley; Laurence Macia; Linda J. Mason; Laura K. Roberts; Connie Hoi Yee Wong; Raymond Shim; Remy Robert; Nina Chevalier; Jian K. Tan; Eliana Mariño; Robert J. Moore; Lee H. Wong; Malcolm J. McConville; Dedreia Tull; Lisa Wood; Vanessa E. Murphy; Joerg Mattes; Peter G. Gibson; Charles R. Mackay

Asthma is prevalent in Western countries, and recent explanations have evoked the actions of the gut microbiota. Here we show that feeding mice a high-fibre diet yields a distinctive gut microbiota, which increases the levels of the short-chain fatty acid, acetate. High-fibre or acetate-feeding led to marked suppression of allergic airways disease (AAD, a model for human asthma), by enhancing T-regulatory cell numbers and function. Acetate increases acetylation at the Foxp3 promoter, likely through HDAC9 inhibition. Epigenetic effects of fibre/acetate in adult mice led us to examine the influence of maternal intake of fibre/acetate. High-fibre/acetate feeding of pregnant mice imparts on their adult offspring an inability to develop robust AAD. High fibre/acetate suppresses expression of certain genes in the mouse fetal lung linked to both human asthma and mouse AAD. Thus, diet acting on the gut microbiota profoundly influences airway responses, and may represent an approach to prevent asthma, including during pregnancy.


Journal of Applied Microbiology | 2009

The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae

Dragana Stanley; A. Bandara; Sarah Fraser; Paul J. Chambers; Grant A. Stanley

Saccharomyces cerevisiae is traditionally used for alcoholic beverage and bioethanol production; however, its performance during fermentation is compromised by the impact of ethanol accumulation on cell vitality. This article reviews studies into the molecular basis of the ethanol stress response and ethanol tolerance of S. cerevisiae; such knowledge can facilitate the development of genetic engineering strategies for improving cell performance during ethanol stress. Previous studies have used a variety of strains and conditions, which is problematic, because the impact of ethanol stress on gene expression is influenced by the environment. There is however some commonality in Gene Ontology categories affected by ethanol assault that suggests that the ethanol stress response of S. cerevisiae is compromised by constraints on energy production, leading to increased expression of genes associated with glycolysis and mitochondrial function, and decreased gene expression in energy‐demanding growth‐related processes. Studies using genome‐wide screens suggest that the maintenance of vacuole function is important for ethanol tolerance, possibly because of the roles of this organelle in protein turnover and maintaining ion homoeostasis. Accumulation of Asr1 and Rat8 in the nucleus specifically during ethanol stress suggests S. cerevisiae has a specific response to ethanol stress although this supposition remains controversial.


Applied Microbiology and Biotechnology | 2014

Microbiota of the chicken gastrointestinal tract influence on health, productivity and disease /

Dragana Stanley; Robert J. Hughes; Robert J. Moore

Recent advances in the technology available for culture-independent methods for identification and enumeration of environmental bacteria have invigorated interest in the study of the role of chicken intestinal microbiota in health and productivity. Chickens harbour unique and diverse bacterial communities that include human and animal pathogens. Increasing public concern about the use of antibiotics in the poultry industry has influenced the ways in which poultry producers are working towards improving birds’ intestinal health. Effective means of antibiotic-independent pathogen control through competitive exclusion and promotion of good protective microbiota are being actively investigated. With the realisation that just about any change in environment influences the highly responsive microbial communities and with the abandonment of the notion that we can isolate and investigate a single species of interest outside of the community, came a flood of studies that have attempted to profile the intestinal microbiota of chickens under numerous conditions. This review aims to address the main issues in investigating chicken microbiota and to summarise the data acquired to date.


Applied Microbiology and Biotechnology | 2012

Intestinal microbiota associated with differential feed conversion efficiency in chickens

Dragana Stanley; Stuart E. Denman; Robert J. Hughes; Mark S. Geier; Tamsyn M. Crowley; Honglei Chen; Volker Haring; Robert J. Moore

Analysis of model systems, for example in mice, has shown that the microbiota in the gastrointestinal tract can play an important role in the efficiency of energy extraction from diets. The study reported here aimed to determine whether there are correlations between gastrointestinal tract microbiota population structure and energy use in chickens. Efficiency in converting food into muscle mass has a significant impact on the intensive animal production industries, where feed represents the major portion of production costs. Despite extensive breeding and selection efforts, there are still large differences in the growth performance of animals fed identical diets and reared under the same conditions. Variability in growth performance presents management difficulties and causes economic loss. An understanding of possible microbiota drivers of these differences has potentially important benefits for industry. In this study, differences in cecal and jejunal microbiota between broiler chickens with extreme feed conversion capabilities were analysed in order to identify candidate bacteria that may influence growth performance. The jejunal microbiota was largely dominated by lactobacilli (over 99% of jejunal sequences) and showed no difference between the birds with high and low feed conversion ratios. The cecal microbial community displayed higher diversity, and 24 unclassified bacterial species were found to be significantly (<0.05) differentially abundant between high and low performing birds. Such differentially abundant bacteria represent target populations that could potentially be modified with prebiotics and probiotics in order to improve animal growth performance.


Nature Immunology | 2017

Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes

Eliana Mariño; James L Richards; Keiran H McLeod; Dragana Stanley; Yu Anne Yap; Jacinta Knight; Craig McKenzie; Jan Kranich; Ana Carolina Oliveira; Fernando J. Rossello; Balasubramanian Krishnamurthy; Christian M. Nefzger; Laurence Macia; Alison N. Thorburn; Alan G. Baxter; Grant Morahan; Lee H. Wong; Jose M. Polo; Robert J. Moore; Trevor Lockett; Julie M. Clarke; David L. Topping; Leonard C. Harrison; Charles R. Mackay

Gut dysbiosis might underlie the pathogenesis of type 1 diabetes. In mice of the non-obese diabetic (NOD) strain, we found that key features of disease correlated inversely with blood and fecal concentrations of the microbial metabolites acetate and butyrate. We therefore fed NOD mice specialized diets designed to release large amounts of acetate or butyrate after bacterial fermentation in the colon. Each diet provided a high degree of protection from diabetes, even when administered after breakdown of immunotolerance. Feeding mice a combined acetate- and butyrate-yielding diet provided complete protection, which suggested that acetate and butyrate might operate through distinct mechanisms. Acetate markedly decreased the frequency of autoreactive T cells in lymphoid tissues, through effects on B cells and their ability to expand populations of autoreactive T cells. A diet containing butyrate boosted the number and function of regulatory T cells, whereas acetate- and butyrate-yielding diets enhanced gut integrity and decreased serum concentration of diabetogenic cytokines such as IL-21. Medicinal foods or metabolites might represent an effective and natural approach for countering the numerous immunological defects that contribute to T cell–dependent autoimmune diseases.


PLOS ONE | 2013

Highly variable microbiota development in the chicken gastrointestinal tract

Dragana Stanley; Mark S. Geier; Robert J. Hughes; Stuart E. Denman; Robert J. Moore

Studies investigating the role that complex microbiotas associated with animals and humans play in health and wellbeing have been greatly facilitated by advances in DNA sequencing technology. Due to the still relatively high sequencing costs and the expense of establishing and running animal trials and collecting clinical samples, most of the studies reported in the literature are limited to a single trial and relatively small numbers of samples. Results from different laboratories, investigating similar trials and samples, have often produced quite different pictures of microbiota composition. This study investigated batch to batch variations in chicken cecal microbiota across three similar trials, represented by individually analysed samples from 207 birds. Very different microbiota profiles were found across the three flocks. The flocks also differed in the efficiency of nutrient use as indicated by feed conversion ratios. In addition, large variations in the microbiota of birds within a single trial were noted. It is postulated that the large variability in microbiota composition is due, at least in part, to the lack of colonisation of the chicks by maternally derived bacteria. The high hygiene levels maintained in modern commercial hatcheries, although effective in reducing the burden of specific diseases, may have the undesirable effect of causing highly variable bacterial colonization of the gut. Studies in humans and other animals have previously demonstrated large variations in microbiota composition when comparing individuals from different populations and from different environments but this study shows that even under carefully controlled conditions large variations in microbiota composition still occur.


Veterinary Microbiology | 2013

Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed.

Dragana Stanley; Mark S. Geier; Stuart E. Denman; Volker Haring; Tamsyn M. Crowley; Robert J. Hughes; Robert J. Moore

The microbiota of the gastrointestinal tract is a complex community of many different species of microorganisms, dominated by bacteria. This diverse population provides the host with an extensive array of enzymes and substrates which, together with the hosts metabolic capabilities, provides an extensive metabolome available for nutrient and energy collection. We investigated broiler chickens to determine whether the abundance of certain members of the microbiota was correlated with the relative ability to extract energy from a typical wheat soybean diet. A number of mostly uncultured phylotypes were identified that significantly differed in abundance between birds with high apparent metabolizable energy (AME), measured as the difference between energy consumed and energy excreted, and those with low AME. Among the phylotypes that were more prevalent in birds with high energy efficiency, most were closely associated with isolates of bacterial groups that are commonly recognized as producing enzymes that degrade cellulose and/or resistant starch. Phylotypes that were negatively correlated with performance were all unknown and uncultured, a significant number belonging to an unknown class of Firmicutes. The identification of bacterial phylotypes correlated with the efficiency of energy use opens up the possibility of harnessing these bacteria for the manipulation of the hosts ability to utilize energy. Increasing the ability to convert food to body weight is of interest to the agricultural industries, while the opposite is applicable in weight management and obesity control in humans.


Veterinary Microbiology | 2012

Changes in the caecal microflora of chickens following Clostridium perfringens challenge to induce necrotic enteritis

Dragana Stanley; Anthony L. Keyburn; Stuart E. Denman; Robert J. Moore

Necrotic enteritis is a disease of considerable economic importance to the global poultry industry. Clostridium perfringens has long been recognised as the etiological agent of the disease. However, disease initiation and progression is complex and appears to be precipitated by a range of predisposing factors. The present study investigated microbial interactions in the caecum of birds challenged with C. perfringens that developed necrotic enteritis. Bacterial populations of healthy and diseased birds, across two independent animal trials, were characterised by pyrosequencing of the V1-V3 region of 16S rRNA genes. Significant changes in the microbiota of infected birds were detected. Most of the affected bacterial species, including a number of butyrate producers, were reduced in abundance in infected birds compared to uninfected controls and a number of phylotypes, classified as Weissella species, were also more abundant in healthy birds. Conversely, some bacterial groups were more abundant in the C. perfringens-infected birds, for example, members of an unclassified order of Mollicutes showed a 3.7-fold increase in abundance in infected birds. Representative sequences from this novel order shared 99% identity with sequences previously detected in intestinal microbiota of chickens and humans, and have previously been shown to be represented in a number of samples originating from irritable bowel syndrome disease patients. We speculate that these newly identified perturbations in the composition of caecal microflora may play a role in the development and manifestation of necrotic enteritis.


Veterinary Microbiology | 2014

Two necrotic enteritis predisposing factors, dietary fishmeal and Eimeria infection, induce large changes in the caecal microbiota of broiler chickens

Shu-Biao Wu; Dragana Stanley; Nicholas Rodgers; Robert A. Swick; Robert J. Moore

It is widely established that a high-protein fishmeal supplemented starter diet and Eimeria infection can predispose birds to the development of clinical necrotic enteritis symptoms following Clostridium perfringens infection. However, it has not been clearly established what changes these treatments cause to predispose birds to succumb to necrotic enteritis. We analysed caecal microbiota of 4 groups of broilers (n=12) using deep pyrosequencing of 16S rDNA amplicons: (1) control chicks fed a control diet, (2) Eimeria infected chicks fed control diet, (3) chicks fed fishmeal supplemented diet and lastly (4) both fishmeal fed and Eimeria infected chicks. We found that the high-protein fishmeal diet had a strong effect on the intestinal microbiota similar to the previously reported effect of C. perfringens infection. We noted major changes in the prevalence of various lactobacilli while the total culturable Lactobacillus counts remained stable. The Ruminococcaceae, Lachnospiraceae, unknown Clostridiales and Lactobacillaceae families were most affected by fishmeal with increases in a number of operational taxonomic units (OTUs) that had previously been linked to Crohns disease and reductions in OTUs known to be butyrate producers. Eimeria induced very different changes in microbiota; Ruminococcaceae groups were reduced in number and three unknown Clostridium species were increased in abundance. Additionally, Eimeria did not significantly influence changes in pH, formic, propionic or isobutyric acid while fishmeal induced dramatic changes in all these measures. Both fishmeal feeding and Eimeria infection induced significant changes in the gut microbiota; these changes may play an important role in predisposing birds to necrotic enteritis.


Frontiers in Microbiology | 2016

Bacteria within the Gastrointestinal Tract Microbiota Correlated with Improved Growth and Feed Conversion: Challenges Presented for the Identification of Performance Enhancing Probiotic Bacteria

Dragana Stanley; Robert J. Hughes; Mark S. Geier; Robert J. Moore

Identification of bacteria associated with desirable productivity outcomes in animals may offer a direct approach to the identification of probiotic bacteria for use in animal production. We performed three controlled chicken trials (n = 96) to investigate caecal microbiota differences between the best and poorest performing birds using four performance measures; feed conversion ratio (FCR), utilization of energy from the feed measured as apparent metabolisable energy, gain rate (GR), and amount of feed eaten (FE). The shifts in microbiota composition associated with the performance measures were very different between the three trials. Analysis of the caecal microbiota revealed that the high and low FCR birds had significant differences in the abundance of some bacteria as demonstrated by shifts in microbiota alpha and beta diversity. Trials 1 and 2 showed significant overall community shifts, however, the microbial changes driving the difference between good and poor performers were very different. Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae families and genera Ruminococcus, Faecalibacterium and multiple lineages of genus Clostridium (from families Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae) were highly abundant in good FCR birds in Trial 1. Different microbiota was associated with FCR in Trial 2; Catabacteriaceae and unknown Clostridiales family members were increased in good FCR and genera Clostridium (from family Clostridiaceae) and Lactobacillus were associated with poor FCR. Trial 3 had only mild microbiota differences associated with all four performance measures. Overall, the genus Lactobacillus was correlated with feed intake which resulted in poor FCR performance. The genus Faecalibacterium correlated with improved FCR, increased GR and reduced FE. There was overlap in phylotypes correlated with improved FCR and GR, while different microbial cohorts appeared to be correlated with FE. Even under controlled conditions different cohorts of birds developed distinctly different microbiotas. Within the different trial groups the abundance of certain bacterial groups correlated with productivity outcomes. However, with different underlying microbiotas there were different bacteria correlated with performance. The challenge will be to identify probiotic bacteria that can reliably deliver favorable outcomes from diverse microbiotas.

Collaboration


Dive into the Dragana Stanley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert J. Hughes

University of New England (United States)

View shared research outputs
Top Co-Authors

Avatar

Mark S. Geier

South Australian Research and Development Institute

View shared research outputs
Top Co-Authors

Avatar

James Chapman

Central Queensland University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul J. Chambers

Australian Wine Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sheeana Gangadoo

Central Queensland University

View shared research outputs
Researchain Logo
Decentralizing Knowledge