Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamsyn M. Crowley is active.

Publication


Featured researches published by Tamsyn M. Crowley.


Applied Microbiology and Biotechnology | 2012

Intestinal microbiota associated with differential feed conversion efficiency in chickens

Dragana Stanley; Stuart E. Denman; Robert J. Hughes; Mark S. Geier; Tamsyn M. Crowley; Honglei Chen; Volker Haring; Robert J. Moore

Analysis of model systems, for example in mice, has shown that the microbiota in the gastrointestinal tract can play an important role in the efficiency of energy extraction from diets. The study reported here aimed to determine whether there are correlations between gastrointestinal tract microbiota population structure and energy use in chickens. Efficiency in converting food into muscle mass has a significant impact on the intensive animal production industries, where feed represents the major portion of production costs. Despite extensive breeding and selection efforts, there are still large differences in the growth performance of animals fed identical diets and reared under the same conditions. Variability in growth performance presents management difficulties and causes economic loss. An understanding of possible microbiota drivers of these differences has potentially important benefits for industry. In this study, differences in cecal and jejunal microbiota between broiler chickens with extreme feed conversion capabilities were analysed in order to identify candidate bacteria that may influence growth performance. The jejunal microbiota was largely dominated by lactobacilli (over 99% of jejunal sequences) and showed no difference between the birds with high and low feed conversion ratios. The cecal microbial community displayed higher diversity, and 24 unclassified bacterial species were found to be significantly (<0.05) differentially abundant between high and low performing birds. Such differentially abundant bacteria represent target populations that could potentially be modified with prebiotics and probiotics in order to improve animal growth performance.


Frontiers in Pharmacology | 2015

Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins

Kaavya A Mohanasundaram; Naomi L. Haworth; Mani P Grover; Tamsyn M. Crowley; Andrzej M. Goscinski; Merridee A. Wouters

Cysteine is susceptible to a variety of modifications by reactive oxygen and nitrogen oxide species, including glutathionylation; and when two cysteines are involved, disulfide formation. Glutathione-cysteine adducts may be removed from proteins by glutaredoxin, whereas disulfides may be reduced by thioredoxin. Glutaredoxin is homologous to the disulfide-reducing thioredoxin and shares similar binding modes of the protein substrate. The evolution of these systems is not well characterized. When a single Cys is present in a protein, conjugation of the redox buffer glutathione may induce conformational changes, resulting in a simple redox switch that effects a signaling cascade. If a second cysteine is introduced into the sequence, the potential for disulfide formation exists. In favorable protein contexts, a bistable redox switch may be formed. Because of glutaredoxins similarities to thioredoxin, the mutated protein may be immediately exapted into the thioredoxin-dependent redox cycle upon addition of the second cysteine. Here we searched for examples of protein substrates where the number of redox-active cysteine residues has changed throughout evolution. We focused on cross-strand disulfides (CSDs), the most common type of forbidden disulfide. We searched for proteins where the CSD is present, absent and also found as a single cysteine in protein orthologs. Three different proteins were selected for detailed study—CD4, ERO1, and AKT. We created phylogenetic trees, examining when the CSD residues were mutated during protein evolution. We posit that the primordial cysteine is likely to be the cysteine of the CSD which undergoes nucleophilic attack by thioredoxin. Thus, a redox-active disulfide may be introduced into a protein structure by stepwise mutation of two residues in the native sequence to Cys. By extension, evolutionary acquisition of structural disulfides in proteins can potentially occur via transition through a redox-active disulfide state.


Veterinary Microbiology | 2013

Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed.

Dragana Stanley; Mark S. Geier; Stuart E. Denman; Volker Haring; Tamsyn M. Crowley; Robert J. Hughes; Robert J. Moore

The microbiota of the gastrointestinal tract is a complex community of many different species of microorganisms, dominated by bacteria. This diverse population provides the host with an extensive array of enzymes and substrates which, together with the hosts metabolic capabilities, provides an extensive metabolome available for nutrient and energy collection. We investigated broiler chickens to determine whether the abundance of certain members of the microbiota was correlated with the relative ability to extract energy from a typical wheat soybean diet. A number of mostly uncultured phylotypes were identified that significantly differed in abundance between birds with high apparent metabolizable energy (AME), measured as the difference between energy consumed and energy excreted, and those with low AME. Among the phylotypes that were more prevalent in birds with high energy efficiency, most were closely associated with isolates of bacterial groups that are commonly recognized as producing enzymes that degrade cellulose and/or resistant starch. Phylotypes that were negatively correlated with performance were all unknown and uncultured, a significant number belonging to an unknown class of Firmicutes. The identification of bacterial phylotypes correlated with the efficiency of energy use opens up the possibility of harnessing these bacteria for the manipulation of the hosts ability to utilize energy. Increasing the ability to convert food to body weight is of interest to the agricultural industries, while the opposite is applicable in weight management and obesity control in humans.


PLOS ONE | 2012

Role of Position 627 of PB2 and the Multibasic Cleavage Site of the Hemagglutinin in the Virulence of H5N1 Avian Influenza Virus in Chickens and Ducks

Karel A. Schat; John Bingham; Jeff M. Butler; Li-Mei Chen; Sue Lowther; Tamsyn M. Crowley; Robert J. Moore; Ruben O. Donis; John W. Lowenthal

Highly pathogenic H5N1 avian influenza viruses have caused major disease outbreaks in domestic and free-living birds with transmission to humans resulting in 59% mortality amongst 564 cases. The mutation of the amino acid at position 627 of the viral polymerase basic-2 protein (PB2) from glutamic acid (E) in avian isolates to lysine (K) in human isolates is frequently found, but it is not known if this change affects the fitness and pathogenicity of the virus in birds. We show here that horizontal transmission of A/Vietnam/1203/2004 H5N1 (VN/1203) virus in chickens and ducks was not affected by the change of K to E at PB2-627. All chickens died between 21 to 48 hours post infection (pi), while 70% of the ducks survived infection. Virus replication was detected in chickens within 12 hours pi and reached peak titers in spleen, lung and brain between 18 to 24 hours for both viruses. Viral antigen in chickens was predominantly in the endothelium, while in ducks it was present in multiple cell types, including neurons, myocardium, skeletal muscle and connective tissues. Virus replicated to a high titer in chicken thrombocytes and caused upregulation of TLR3 and several cell adhesion molecules, which may explain the rapid virus dissemination and location of viral antigen in endothelium. Virus replication in ducks reached peak values between 2 and 4 days pi in spleen, lung and brain tissues and in contrast to infection in chickens, thrombocytes were not involved. In addition, infection of chickens with low pathogenic VN/1203 caused neuropathology, with E at position PB2-627 causing significantly higher infection rates than K, indicating that it enhances virulence in chickens.


PLOS ONE | 2014

Identification of MicroRNAs Linked to Regulators of Muscle Protein Synthesis and Regeneration in Young and Old Skeletal Muscle

Evelyn Zacharewicz; Paul A. Della Gatta; John V. Reynolds; Andrew Garnham; Tamsyn M. Crowley; Aaron P. Russell; Séverine Lamon

Background Over the course of ageing there is a natural and progressive loss of skeletal muscle mass. The onset and progression of age-related muscle wasting is associated with an attenuated activation of Akt-mTOR signalling and muscle protein synthesis in response to anabolic stimuli such as resistance exercise. MicroRNAs (miRNAs) are novel and important post-transcriptional regulators of numerous cellular processes. The role of miRNAs in the regulation of muscle protein synthesis following resistance exercise is poorly understood. This study investigated the changes in skeletal muscle miRNA expression following an acute bout of resistance exercise in young and old subjects with a focus on the miRNA species predicted to target Akt-mTOR signalling. Results Ten young (24.2±0.9 years) and 10 old (66.6±1.1 years) males completed an acute resistance exercise bout known to maximise muscle protein synthesis, with muscle biopsies collected before and 2 hours after exercise. We screened the expression of 754 miRNAs in the muscle biopsies and found 26 miRNAs to be regulated with age, exercise or a combination of both factors. Nine of these miRNAs are highly predicted to regulate targets within the Akt-mTOR signalling pathway and 5 miRNAs have validated binding sites within the 3′ UTRs of several members of the Akt-mTOR signalling pathway. The miR-99/100 family of miRNAs notably emerged as potentially important regulators of skeletal muscle mass in young and old subjects. Conclusion This study has identified several miRNAs that were regulated with age or with a single bout of resistance exercise. Some of these miRNAs were predicted to influence Akt-mTOR signalling, and therefore potentially skeletal muscle mass. These miRNAs should be considered as candidate targets for in vivo modulation.


BMC Medical Genomics | 2014

Identification of novel therapeutics for complex diseases from genome-wide association data

Mani P Grover; Sara Ballouz; Kaavya A Mohanasundaram; Richard A. George; Craig D. H. Sherman; Tamsyn M. Crowley; Merridee A. Wouters

BackgroundHuman genome sequencing has enabled the association of phenotypes with genetic loci, but our ability to effectively translate this data to the clinic has not kept pace. Over the past 60 years, pharmaceutical companies have successfully demonstrated the safety and efficacy of over 1,200 novel therapeutic drugs via costly clinical studies. While this process must continue, better use can be made of the existing valuable data. In silico tools such as candidate gene prediction systems allow rapid identification of disease genes by identifying the most probable candidate genes linked to genetic markers of the disease or phenotype under investigation. Integration of drug-target data with candidate gene prediction systems can identify novel phenotypes which may benefit from current therapeutics. Such a drug repositioning tool can save valuable time and money spent on preclinical studies and phase I clinical trials.MethodsWe previously used Gentrepid (http://www.gentrepid.org) as a platform to predict 1,497 candidate genes for the seven complex diseases considered in the Wellcome Trust Case-Control Consortium genome-wide association study; namely Type 2 Diabetes, Bipolar Disorder, Crohns Disease, Hypertension, Type 1 Diabetes, Coronary Artery Disease and Rheumatoid Arthritis. Here, we adopted a simple approach to integrate drug data from three publicly available drug databases: the Therapeutic Target Database, the Pharmacogenomics Knowledgebase and DrugBank; with candidate gene predictions from Gentrepid at the systems level.ResultsUsing the publicly available drug databases as sources of drug-target association data, we identified a total of 428 candidate genes as novel therapeutic targets for the seven phenotypes of interest, and 2,130 drugs feasible for repositioning against the predicted novel targets.ConclusionsBy integrating genetic, bioinformatic and drug data, we have demonstrated that currently available drugs may be repositioned as novel therapeutics for the seven diseases studied here, quickly taking advantage of prior work in pharmaceutics to translate ground-breaking results in genetics to clinical treatments.


BMC Genomics | 2009

Application of chicken microarrays for gene expression analysis in other avian species

Tamsyn M. Crowley; Volker Haring; Simon Burggraaf; Robert J. Moore

BackgroundWith the threat of emerging infectious diseases such as avian influenza, whose natural hosts are thought to be a variety of wild water birds including duck, we are armed with very few genomic resources to investigate large scale immunological gene expression studies in avian species. Multiple options exist for conducting large gene expression studies in chickens and in this study we explore the feasibility of using one of these tools to investigate gene expression in other avian species.ResultsIn this study we utilised a whole genome long oligonucleotide chicken microarray to assess the utility of cross species hybridisation (CSH). We successfully hybridised a number of different avian species to this array, obtaining reliable signals. We were able to distinguish ducks that were infected with avian influenza from uninfected ducks using this microarray platform. In addition, we were able to detect known chicken immunological genes in all of the hybridised avian species.ConclusionCross species hybridisation using long oligonucleotide microarrays is a powerful tool to study the immune response in avian species with little available genomic information. The present study validated the use of the whole genome long oligonucleotide chicken microarray to investigate gene expression in a range of avian species.


Plant Molecular Biology Reporter | 2003

Isolating conifer DNA: a superior polysaccharide elimination method

Tamsyn M. Crowley; Morley Muralitharan; Trevor W. Stevenson

Genomic DNA was isolated from frozen needles of maturePinus radiata clones using a modified extraction technique incorporating cetyltrimethylammonium bromide (CTAB) for cell lysis. A high sodium chloride concentration (2 M) was used at 2 stages of the extraction procedure to eradicate polysaccharides, yielding pure genomic DNA suitable for restriction enzyme digestion and PCR amplification. Extractions were scaled down to suit 1.5-mL Eppendorf tubes, allowing easier handling and enhanced sterility.


Molecular Biology and Evolution | 2016

Selection on Mitochondrial Variants Occurs between and within Individuals in an Expanding Invasion

Lee Ann Rollins; Andrew P. Woolnough; Benjamin G. Fanson; Michelle Cummins; Tamsyn M. Crowley; Alan N. Wilton; Ron Sinclair; Ashleigh Butler; William B. Sherwin

Mitochondria are critical for life, yet their underlying evolutionary biology is poorly understood. In particular, little is known about interaction between two levels of evolution: between individuals and within individuals (competition between cells, mitochondria or mitochondrial DNA molecules). Rapid evolution is suspected to occur frequently in mitochondrial DNA, whose maternal inheritance predisposes advantageous mutations to sweep rapidly though populations. Rapid evolution is also predicted in response to changed selection regimes after species invasion or removal of pathogens or competitors. Here, using empirical and simulated data from a model invasive bird species, we provide the first demonstration of rapid selection on the mitochondrial genome within individuals in the wild. Further, we show differences in mitochondrial DNA copy number associated with competing genetic variants, which may provide a mechanism for selection. We provide evidence for three rarely documented phenomena: selection associated with mitochondrial DNA abundance, selection on the mitochondrial control region, and contemporary selection during invasion.


Seminars in Cell & Developmental Biology | 2012

The tammar wallaby : a model system to examine domain-specific delivery of milk protein bioactives

Kevin R. Nicholas; Julie A. Sharp; Ashalyn Watt; Stephen Wanyonyi; Tamsyn M. Crowley; Meagan J. Gillespie; Christophe Lefevre

The role of milk extends beyond simply providing nutrition to the suckled young. Milk has a comprehensive role in programming and regulating growth and development of the suckled young, and provides a number of potential autocrine factors so that the mammary gland functions appropriately during the lactation cycle. This central role of milk is best studied in animal models such as marsupials that have evolved a different lactation strategy to eutherians and allow researchers to more easily identify regulatory mechanisms that are not as readily apparent in eutherian species. For example, the tammar wallaby (Macropus eugenii) has evolved with a unique reproductive strategy of a short gestation, birth of an altricial young and a relatively long lactation during which the mother progressively changes the composition of the major, and many of the minor components of milk. Consequently, in contrast to eutherians, there is a far greater investment in development of the young during lactation and it is likely that many of the signals that regulate development of eutherian embryos in utero are delivered by the milk. This requires the co-ordinated development and function of the mammary gland since inappropriate timing of these signalling events may result in either limited or abnormal development of the young, and potentially a higher incidence of mature onset disease. Milk proteins play a significant role in these processes by providing timely presentation of signalling molecules and antibacterial protection for the young and the mammary gland at times when there is increased susceptibility to infection. This review describes studies exploiting the unique reproductive strategy of the tammar wallaby to investigate the role of several proteins secreted at specific times during the lactation cycle and that are correlated with potential roles in the young and mammary gland. Interestingly, alternative splicing of some milk protein genes has been utilised by the mammary gland to deliver domain-specific functions at specific times during lactation.

Collaboration


Dive into the Tamsyn M. Crowley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Volker Haring

Australian Animal Health Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dragana Stanley

Central Queensland University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge